Schulinterne Lehrpläne zum Kernlehrplan für die gymnasiale Oberstufe im Fach Biologie

- Der erste Lehrplan ist Stand 2016 und gilt im Schuljahr 2023/2024 für die Q2.
- Der zweite Lehrplan ist ein Entwurf, der im August 2020 verabschiedet wurde und nun für die Q1 und folgende Jahrgänge gilt. Er ist in der Erprobung und wird fortwährend angepasst.

1 Rahmenbedingungen der fachlichen Arbeit

Die Verteilung der Wochenstundenzahlen in der Sekundarstufe II ist wie folgt:

	Fachunterricht in der EF und in der QPH			
10	BI (3)			
11	BI (3/5)			
12	BI (3/5)			

2 Entscheidungen zum Unterricht

Hinweis: Die nachfolgend dargestellte Umsetzung der verbindlichen Kompetenzerwartungen des Kernlehrplans findet auf zwei Ebenen statt. Das Übersichtsraster gibt den Lehrkräften einen raschen Überblick über die laut Fachkonferenz verbindlichen Unterrichtsvorhaben und deren Reihenfolge in der Einführungsphase und in der Qualifikationsphase. In dem Raster sind außer den Themen für das jeweilige Vorhaben und den dazugehörigen Kontexten die damit verknüpften Inhaltsfelder inhaltlichen Schwerpunkte des Vorhabens sowie die Schwerpunkte der Kompetenzentwicklung ausgewiesen. Die Konkretisierung Unterrichtsvorhaben führt die konkretisierten Kompetenzerwartungen des gültigen Kernlehrplans auf, stellt eine mögliche Unterrichtsreihe sowie dazu empfohlene Lehrmittel, Materialien und Methoden dar und verdeutlicht neben diesen Empfehlungen auch vorhabenbezogene verbindliche Absprachen der Fachkonferenz, z.B. zur Durchführung eines für alle Fachkolleginnen und Fachkollegen verbindlichen Experiments oder auch die Festlegung bestimmter Diagnoseinstrumente und Leistungsüberprüfungsformen.

2.1 Unterrichtsvorhaben

Die Darstellung der Unterrichtsvorhaben im schulinternen Lehrplan besitzt den Anspruch, <u>sämtliche</u> im Kernlehrplan angeführten Kompetenzen auszuweisen. Dies entspricht der Verpflichtung jeder Lehrkraft, den Lernenden Gelegenheiten zu geben, <u>alle</u> Kompetenzerwartungen des Kernlehrplans auszubilden und zu entwickeln.

Die entsprechende Umsetzung erfolgt auf zwei Ebenen: der Übersichtsund der Konkretisierungsebene.

Im "Übersichtsraster Unterrichtsvorhaben" (Kapitel 2.1.1) werden die für alle Lehrerinnen und Lehrer gemäß Fachkonferenzbeschluss verbindlichen Kontexte sowie Verteilung und Reihenfolge der Unterrichtsvorhaben dargestellt. Das Übersichtsraster dient dazu, den Kolleginnen und Kollegen einen schnellen Überblick über die Zuordnung der Unterrichtsvorhaben zu den einzelnen Jahrgangsstufen sowie den im Kernlehrplan genannten Kompetenzerwartungen, Inhaltsfeldern und inhaltlichen Schwerpunkten zu Um Klarheit für die Lehrkräfte herzustellen Übersichtlichkeit zu gewährleisten, werden in der Kategorie "Schwerpunkte der Kompetenzentwicklung" an dieser Stelle nur die übergeordneten Kompetenzerwartungen während konkretisierten ausgewiesen, die Kompetenzerwartungen erst auf der Ebene der möglichen konkretisierten Unterrichtsvorhaben Berücksichtigung finden. Der ausgewiesene Zeitbedarf versteht sich als grobe Orientierungsgröße, die nach Bedarf über- oder unterschritten werden kann. Um Spielraum für Vertiefungen, besondere Schülerinteressen, aktuelle Themen bzw. die Erfordernisse anderer besonderer Ereignisse (z.B. Praktika, Kursfahrten o.ä.) zu erhalten. wurden im Rahmen dieses schulinternen Lehrplans nur ca. 75 Prozent der Bruttounterrichtszeit verplant.

Während der Fachkonferenzbeschluss "Übersichtsraster zum Unterrichtsvorhaben" zur Gewährleistung vergleichbarer Standards sowie zur Absicherung von Lerngruppen- und Lehrkraftwechseln für alle Mitglieder der Fachkonferenz Bindekraft entfalten soll, besitzt die exemplarische Ausgestaltung "möglicher konkretisierter Unterrichtsvorhaben" (Kapitel 2.1.2) abgesehen von den in der vierten Fettdruck hervorgehobenen Spalte verbindlichen Fachkonferenzbeschlüssen nur empfehlenden Charakter. Referendarinnen und Referendaren sowie neuen Kolleginnen und Kollegen dienen diese vor allem zur standardbezogenen Orientierung in der neuen Schule, aber auch Verdeutlichung von unterrichtsbezogenen fachgruppeninternen Absprachen zu didaktisch-methodischen Zugängen, fächerübergreifenden Kooperationen, Lernmitteln und -orten sowie vorgesehenen Leistungsüberprüfungen. Abweichungen von den vorgeschlagenen Vorgehensweisen bezüglich der konkretisierten Unterrichtsvorhaben sind im Rahmen der pädagogischen Freiheit und eigenen Verantwortung der Lehrkräfte jederzeit möglich. Sicherzustellen bleibt allerdings auch hier, dass im Rahmen der Umsetzung der Unterrichtsvorhaben insgesamt alle Kompetenzerwartungen des Kernlehrplans Berücksichtigung finden.

2.1.1 Übersichtsraster Unterrichtsvorhaben

Einführungsphase			
Unterrichtsvorhaben I:	Unterrichtsvorhaben II:		
Thema/Kontext: Kein Leben ohne Zelle I – Wie sind Zellen aufgebaut und organisiert?	Thema/Kontext: Erforschung der Biomembran – Welche Bedeutung haben technischer Fortschritt und Modelle für die Forschung?		
Schwerpunkte der	Caburaranalita		
WiedergabeUF1 WiedergabeUF2 AuswahlK1 Dokumentation	Schwerpunkte Kompetenzentwicklung: K1 Dokumentation K2 Recherche K3 Präsentation E3 Hypothesen		
Inhaltsfeld: IF 1 (Biologie der Zelle)	E6 Modelle		
Inhaltliche Schwerpunkte: ☐ Zellaufbau ☐ Stofftransport zwischen Kompartimenten (Teil 1)	 E7 Arbeits- und Denkweisen Inhaltsfeld: IF 1 (Biologie der Zelle) Inhaltliche Schwerpunkte: 		
Zeitbedarf: ca. 11 Std. à 45 Minuten	☐ Biomembranen ☐ Stofftransport zwischen Kompartimenten (Teil 2) Zeitbedarf: ca. 22 Std. à 45 Minuten		
Unterrichtsvorhaben III:	Unterrichtsvorhaben IV:		
Thema/Kontext: Enzyme im Alltag – Welche Rolle spielen Enzyme in unserem Leben? Schwerpunkte der Kompetenzentwicklung:	Thema/Kontext: Biologie und Sport – Welchen Einfluss hat körperliche Aktivität auf unseren Körper? Schwerpunkte der Kompetenzentwicklung:		
 E2 Wahrnehmung und Messung E4 Untersuchungen und Experimente E5 Auswertung 	UF3 SystematisierungB1 KriterienB2 EntscheidungenB3 Werte und Normen		
	Inhaltsfeld: IF 2 (Energiestoffwechsel)		
Inhaltsfeld: IF 2 (Energiestoffwechsel) Inhaltliche Schwerpunkte: □ Enzyme	Inhaltliche Schwerpunkte: ☐ Dissimilation ☐ Körperliche Aktivität und Stoffwechsel Zeitbedarf: ca. 26 Std. à 45 Minuten		
,_,			

Zeitbedarf: ca. 19 Std. à 45 Minuten	
Unterrichtsvorhaben V:	
Thema/Kontext: Kein Leben ohne Zelle II – Welche Bedeutung haben Zellkern und Nukleinsäuren für das Leben?	
Schwerpunkte der	
Kompetenzentwicklung:	
 UF4 Vernetzung 	
E1 Probleme und Fragestellungen	
K4 Argumentation	
B4 Möglichkeiten und Grenzen	
Inhaltsfeld: IF 1 (Biologie der Zelle)	
Inhaltliche Schwerpunkte:	
☐ Funktion des Zellkerns ☐	
Zellverdopplung und DNA	
Zeitbedarf: ca. 12 Std. à 45 Minuten	
Summe Eintuhrung	sphase: 90 Stunden

2.1.2 Mögliche Konkretisierte Unterrichtsvorhaben

Einführungsphase:

Inhaltsfeld: IF 1 Biologie der Zelle

- **Unterrichtsvorhaben I:** Kein Leben ohne Zelle I *Wie sind Zellen aufgebaut und organisiert?*
- **Unterrichtsvorhaben V:** Kein Leben ohne Zelle II Welche Bedeutung haben Zellkern und Nukleinsäuren für das Leben?
- **Unterrichtvorhaben III:** Erforschung der Biomembran *Welche Bedeutung haben technischer Fortschritt und Modelle für die Forschung?*

Inhaltliche Schwerpunkte:

- Zellaufbau
- Biomembranen
- Stofftransport zwischen Kompartimenten
- Funktion des Zellkerns
- Zellverdopplung und DNA

Basiskonzepte:

System

Prokaryot, Eukaryot, Biomembran, Zellorganell, Zellkern, Chromosom, Makromolekül, Cytoskelett, Transport, Zelle, Gewebe, Organ, Plasmolyse

Struktur und Funktion

Cytoskelett, Zelldifferenzierung, Zellkompartimentierung, Transport, Diffusion, Osmose, Zellkommunikation, Tracer

Entwicklung

Endosymbiose, Replikation, Mitose, Zellzyklus, Zelldifferenzierung

Zeitbedarf: ca. 45 Std. à 45 Minuten

Mögliche unterrichtsvorhabenbezogene Konkretisierung:

Hatawish tarradi ab an b						
Unterrichtsvorhaben I: Thema/Kontext: Kein Leben ohne Zelle I – Wie sind Zellen aufgebaut und organisiert?						
Inhaltsfeld: IF 1 Biologie der Zelle						
Inhaltliche Schwerpunkte:		Schwerpunkte übergeordneter Kompete	nzerwartungen:			
 Zellaufbau 		Die Schülerinnen und Schüler können				
 Stofftransport zwischen Kon 	npartimenten (Teil 1)	 UF1 ausgewählte biologische beschreiben. 	Phänomene und Konzepte			
Zeitbedarf: ca. 11 Std. à 45 Minuten		 UF2 biologische Konzepte zur Lösung von Problemen in eingegrenzten Bereichen auswählen und dabei Wesentliches von Unwesentlichem unterscheiden. K1 Fragestellungen, Untersuchungen, Experimente und Daten strukturiert dokumentieren, auch mit Unterstützung digitaler Werkzeuge. 				
Mögliche didaktische Leitfragen	Konkretisierte	Empfohlene Lehrmittel/ Materialien/	Didaktisch-methodische			
/ Sequenzierung inhaltlicher	Kompetenzerwartungen	Methoden	Anmerkungen und			
Aspekte	des Kernlehrplans		Empfehlungen sowie			
	Die Schülerinnen und Schüler		Darstellung der verbindlichen Absprachen			
	Schuler		der Fachkonferenz			
SI-Vorwissen		Mind-map zu Zelle, Gewebe, Organ und Organismus				
Zelltheorie – Wie entsteht aus	stellen den					
einer zufälligen Beobachtung eine	wissenschaftlichen					
wissenschaftliche Theorie? • Zelltheorie	Erkenntniszuwachs zum Zellaufbau durch					
ZeiltrieorieOrganismus, Organ,	technischen Fortschritt an					
Gewebe, Zelle	Beispielen (durch Licht-,					
Elektronen- und						
	Fluoreszenzmikroskopie) dar (E7).					
Zelle, Gewebe, Organe,	ordnen differenzierte Zellen	Mikroskopieren von verschiedenen	Verbindlicher Beschluss der			
Organismen – Welche	auf Grund ihrer Strukturen	Zelltypen	Fachkonferenz:			
Unterschiede bestehen zwischen	spezifischen Geweben und					

Zellen, die verschiedene Funktionen übernehmen? • Zelldifferenzierung	Organen zu und erläutern den Zusammenhang zwischen Struktur und Funktion (UF3, UF4, UF1).		Mikroskopieren von Präparaten verschiedener Zelltypen
Wie ist eine Zelle organisiert und wie gelingt es der Zelle so viele verschiedene Leistungen zu erbringen? • Aufbau und Funktion von Zellorganellen • Zellkompartimentierung	beschreiben Aufbau und Funktion der Zellorganellen und erläutern die Bedeutung der Zellkompartimentierung für die Bildung unterschiedlicher Reaktionsräume innerhalb einer Zelle (UF3, UF1).	Stationenlernen zu Zellorganellen Mögliche Alternative Gruppenpuzzle	•
 Endo – und Exocytose Endosymbiontentheorie 	elliel Zelle (OF3, OF1).		
	präsentieren adressatengerecht die Endosymbiontentheorie mithilfe angemessener		
	Medien (K3, K1, UF1). erläutern die membranvermittelten Vorgänge der Endo- und Exocytose (u. a. am Golgi- Apparat) (UF1, UF2).		
	erläutern die Bedeutung des Cytoskeletts für den		

Was aind pro und aukanyatiaaha	intrazellulären Transport [und die Mitose] (UF3, UF1).	Compingamkoitan und			
Was sind pro- und eukaryotische Zellen und worin unterscheiden sie sich grundlegend? • Aufbau pro- und eukaryotischer Zellen	beschreiben den Aufbau pro- und eukaryotischer Zellen und stellen die Unterschiede heraus (UF3).	Gemeinsamkeiten und Unterschiede der verschiedenen Zellen werden erarbeitet. EM-Bild wird mit schematischer Zeichnung verglichen.			
Diagnose von Schülerkompetenzen:					
SI-Vorwissen wird ohne Benotung ermittelt					
 ggf. Teil einer Klausur 					

Mögliche unterrichtsvorhabenbezogene Konkretisierung:

Unterrichtsvorhaben II: Thema/Kontext: Erforschung der Biomembran – Welche Bedeutung haben technischer Fortschritt und Modelle für die Forschung?				
Inhaltsfeld: IF 1 (Biologie der Zelle)				
Inhaltliche Schwerpunkte:	Schwerpunkte übergeordneter Kompetenzerwartungen:			
Biomembranen	Die Schülerinnen und Schüler können			
Stofftransport zwischen Kompartimenten (Teil 2)	 K1 Fragestellungen, Untersuchungen, Experimente und Daten strukturiert dokumentieren, auch mit Unterstützung digitaler 			
Zeitbedarf: ca. 22 Std. à 45 Minuten	Werkzeuge.			
	 K2 in vorgegebenen Zusammenhängen kriteriengeleitet biologischtechnische Fragestellungen mithilfe von Fachbüchern und anderen Quellen bearbeiten. K3 biologische Sachverhalte, Arbeitsergebnisse und Erkenntnisse adressatengerecht sowie formal, sprachlich und fachlich korrekt in Kurzvorträgen oder kurzen Fachtexten darstellen. 			

		 E3 zur Klärung biologischer Fragestellungen Hypothesen formulieren und Möglichkeiten zu ihrer Überprüfung angeben. E6 Modelle zur Beschreibung, Erklärung und Vorhersage biologischer Vor-gänge begründet auswählen und deren Grenzen und Gültigkeitsbereiche angeben. E7 an ausgewählten Beispielen die Bedeutung, aber auch die Vorläufigkeit biologischer Modelle und Theorien beschreiben. 		
Mögliche didaktische Leitfragen / Sequenzierung inhaltlicher Aspekte	Konkretisierte Kompetenzerwartungen des Kernlehrplans Die Schülerinnen und Schüler	Empfohlene Lehrmittel/ Materialien/ Methoden	Didaktisch-methodische Anmerkungen und Empfehlungen sowie Darstellung der verbindlichen Absprachen der Fachkonferenz	
Weshalb und wie beeinflusst die Salzkonzentration den Zustand von Zellen?	führen Experimente zur Diffusion und Osmose durch und erklären diese mit Modellvorstellungen auf Teilchenebene (E4, E6, K1, K4).	Experimente mit rote Küchenzwiebel und mikroskopische Untersuchungen Informationstexte, Animationen und Lehrfilme zur Brownschen Molekularbewegung (physics-	SuS formulieren erste Hypothesen, planen und führen geeignete Experimente zur Überprüfung ihrer Vermutungen durch.	
• Plasmolyse	führen mikroskopische Untersuchungen zur Plasmolyse hypothesengeleitet durch und interpretieren die beobachteten Vorgänge (E2, E3, E5, K1, K4). recherchieren Beispiele der Osmose und Osmoregulation in unterschiedlichen Quellen und dokumentieren die Ergebnisse in einer	animations.com) Demonstrationsexperimente zur Diffusion (z.B. Teebeutel) Osmoseexperimente	Versuche zur Überprüfung der Hypothesen Versuche zur Generalisierbarkeit der Ergebnisse werden geplant und durchgeführt. Phänomen wird auf Modellebene erklärt	

 Brownsche- Molekularbewegung Diffusion Osmose 	eigenständigen Zusammenfassung (K1, K2).		Weitere Beispiele (z. B. Salzwiese, Niere) für Osmoregulation werden recherchiert.
 Warum löst sich Öl nicht in Wasser? Aufbau und Eigenschaften von Lipiden und Phospholipiden Wassermoleküle als Dipol, Wasser als Lösungsmittel 	ordnen die biologisch bedeutsamen Makromoleküle Lipide und Proteine den verschiedenen zellulären Strukturen und Funktionen zu und erläutern sie bezüglich ihrer wesentlichen chemischen Eigenschaften (UF1, UF3).	Demonstrationsexperiment zum Verhalten von Öl in Wasser Informationsblätter • zu funktionellen Gruppen • Strukturformeln von Lipiden und Phospholipiden • Modelle zu Phospholipiden in Wasser	Phänomen wird beschrieben. Das Verhalten von Lipiden und Phospholipiden in Wasser wird mithilfe ihrer Strukturformeln und den Eigenschaften der funktionellen Gruppen erklärt. Einfache Modelle (2-D) zum Verhalten von Phospholipiden in Wasser werden erarbeitet und diskutiert.
Welche Bedeutung haben technischer Fortschritt und Modelle für die Erforschung von Biomembranen? • Erforschung der Biomembran (historisch-genetischer Ansatz)	stellen den wissenschaftlichen Erkenntniszuwachs zum Aufbau von Biomembranen durch technischen Fortschritt an Beispielen dar und zeigen daran die Veränderlichkeit von	Versuche von Gorter und Grendel mit Erythrozyten (1925) zum Bilayer-Modell	Zentrale Eigenschaften naturwissenschaftlicher Theorien werden beispielhaft erarbeitet. Der wissenschaftliche Erkenntniszuwachs wird fortlaufend dokumentiert

		NA	Al-L-9-dament and day Device	1
		Modellen auf (E5, E6, E7,	Abbildungen auf der Basis von	
		K4).	Gefrierbruchtechnik und	Der Modellbegriff und die
-	Bilayer-Modell	ordnen die biologisch	Elektronenmikroskopie	Vorläufigkeit von Modellen
		bedeutsamen		im Forschungsprozess
		Makromoleküle		werden verdeutlicht.
		(Kohlenhydrate, Lipide,		
		Proteine, [Nucleinsäuren])	Funktionsweise von Tracern	
		den verschiedenen		Die "neuen" Daten legen
		zellulären Strukturen und		eine Modifikation des
		Funktionen zu und erläutern		Bilayer-Modells von Gorter
		sie bezüglich ihrer	Informationen zum dynamisch	und Grendel nahe und
		wesentlichen chemischen	strukturierten Mosaikmodell	führen zu neuen
		Eigenschaften (UF1, UF3).	or antanorton wedantinodon	Hypothesen (einfaches
				Sandwichmodell /
		recherchieren die	Lernplakat (fertig gestellt) zu den	Sandwichmodell mit
_	Sandwich-Modelle	Bedeutung und die	Biomembranen	eingelagertem Protein /
	Canawion Wodelie	Funktionsweise von Tracern	Diomenibranen	Sandwichmodell mit
		für die Zellforschung und		integralem Protein).
		stellen ihre Ergebnisse		integralem i rotem).
		graphisch und mithilfe von		Das Membranmodell muss
				erneut modifiziert werden.
		Texten dar (K2, K3).		emedi modilizieri werden.
	Fluid-Mosaik-Modell	recherchieren die		
-	Fluid-Mosaik-Modell			Des Elvid Messils Messell
		Bedeutung der Außenseite		Das Fluid-Mosaik-Modell
		der Zellmembran und ihrer		muss erweitert werden.
		Oberflächenstrukturen für		
		die Zellkommunikation (u. a.		
		Antigen-Antikörper-		
		Reaktion) und stellen die		
		Ergebnisse		
		adressatengerecht dar (K1,		
-	Erweitertes Fluid-Mosaik-	K2, K3).		
	Modell (Kohlenhydrate in der			
	Biomembran)			
	•			
L		1	<u> </u>	1

- Markierungsmethoden zur Ermittlung von Membranmolekülen (Proteinsonden)		Wichtige wissenschaftliche Arbeits- und Denkweisen sowie die Rolle von Modellen und dem technischen Fortschritt werden herausgestellt.
Wie werden gelöste Stoffe durch Biomembranen hindurch in die Zelle bzw. aus der Zelle heraus transportiert? • Passiver Transport • Aktiver Transport	beschreiben Transportvorgänge durch Membranen für verschiedene Stoffe mithilfe geeigneter Modelle und geben die Grenzen dieser Modelle an (E6).	SuS können entsprechend der Informationstexte 2-D-Modelle zu den unterschiedlichen Transportvorgängen erstellen bzw. Wissen auf diese Modelle anwenden
<u>Diagnose von Schülerkompetenzen:</u> <u>Leistungsbewertung:</u>		

Einführungsphase:

• ggf. Klausur

Inhaltsfeld: IF 2 (Energiestoffwechsel)

- Unterrichtsvorhaben IV: Enzyme im Alltag Welche Rolle spielen Enzyme in unserem Leben?
- Unterrichtsvorhaben V: Biologie und Sport Welchen Einfluss hat körperliche Aktivität auf unseren Körper?

Inhaltliche Schwerpunkte:

- Enzyme
- Dissimilation
- Körperliche Aktivität und Stoffwechsel

Basiskonzepte:

System

Muskulatur, Mitochondrium, Enzym, Zitronensäurezyklus, Dissimilation, Gärung

Struktur und Funktion

Enzym, Grundumsatz, Leistungsumsatz, Energieumwandlung, ATP, NAD+

Entwicklung

Training

Zeitbedarf: ca. 45 Std. à 45 Minuten

Mögliche unterrichtsvorhabenbezogene Konkretisierung:

Unterrichtsvorhaben IV:					
Thema/Kontext: Enzyme im Alltag – Welche Rolle spielen Enzyme in					
unserem Leben? Inhaltsfelder: IF 1 (Biologie der Zelle), IF 2 (Energiestoffwechsel)					
Inhaltliche Schwerpur		Schwerpunkte	übergeordneter		
•	iikle.	Kompetenzerwarti			
• Enzyme		-	_		
• Enzyme Zeitbedarf: ca. 19 Std. à 45 Minuten		 Die Schülerinnen und Schüler können E2 kriteriengeleitet beobachten und messen sowie gewonnene Ergebnisse objektiv und frei von eigenen Deutungen beschreiben. E4 Experimente und Untersuchungen zielgerichtet nach dem Prinzip der Variablenkontrolle unter Beachtung der Sicherheitsvorschriften planen und durchführen und dabei mögliche Fehlerquellen reflektieren. E5 Daten bezüglich einer Fragestellung interpretieren, daraus qualitative und einfache quantitative Zusammenhänge ableiten und diese fachlich angemessen beschreiben. 			
Mögliche didaktische Leitfragen / Sequenzierung inhaltlicher Aspekte	Konkretisierte Kompetenzerwa rtungen des Kernlehrplans Die Schülerinnen und Schüler	Empfohlene Lehrmittel/ Materialien/ Methoden	Didaktisch- methodische Anmerkungen und Empfehlungen sowie Darstellung der verbindlichen Absprachen der Fachkonferenz		
Wie sind Zucker aufgebaut und wo spielen sie eine Rolle? • Monosacchari d, • Disaccharid • Polysaccharid	ordnen die biologisch bedeutsamen Makromoleküle (Kohlenhydrate, [Lipide, Proteine, Nucleinsäuren]) den verschiedenen zellulären Strukturen und Funktionen zu und erläutern sie bezüglich ihrer wesentlichen	Informationstext e zu funktionellen Gruppen und ihren Eigenschaften sowie Kohlenhydratklass en und Vorkommen und Funktion in der Natur	- dominoronz		

Wie sind Proteine aufgebaut und wo spielen sie eine Rolle? • Aminosäuren • Peptide, Proteine • Primär-, Sekundär-, Tertiär-, Quartärstruktu r	chemischen Eigenschaften (UF1, UF3). ordnen die biologisch bedeutsamen Makromoleküle ([Kohlenhydrate, Lipide], Proteine, [Nucleinsäuren]) den verschiedenen zellulären Strukturen und Funktionen zu und erläutern sie bezüglich ihrer wesentlichen chemischen Eigenschaften (UF1, UF3).	Haptische Modelle (z.B. Legomodelle) zum Proteinaufbau Informationstext e zum Aufbau und der Struktur von Proteinen	Der Aufbau von Proteinen wird erarbeitet. Die Quartärstruktur wird am Beispiel von Hämoglobin veranschaulicht.
Welche Bedeutung haben Enzyme im menschlichen Stoffwechsel? • Aktives Zentrum • Allgemeine Enzymgleichu ng • Substrat- und Wirkungsspez ifität	beschreiben und erklären mithilfe geeigneter Modelle Enzymaktivität und Enzymhemmung (E6).	a) Peroxidase mit Kartoffelsc heibe oder Kartoffelsa ft (Verdünnu ngsreihe) b) Amylase und Stärke	Die Substrat- und Wirkungsspezifität werden veranschaulicht. Die naturwissenschaftl ichen Fragestellungen werden vom Phänomen her entwickelt. Hypothesen zur Erklärung der Phänomene werden aufgestellt. Experimente zur Überprüfung der Hypothesen werden geplant, durchgeführt und abschließend werden mögliche Fehlerquellen ermittelt und diskutiert. Modelle zur Funktionsweise

	1	T	
			des aktiven Zentrums werden erstellt.
Welche Wirkung / Funktion haben Enzyme? • Katalysator • Biokatalysator • Endergonisch e und exergonische Reaktion • Aktivierungse nergie, Aktivierungsb arriere / Reaktionssch welle	erläutern Struktur und Funktion von Enzymen und ihre Bedeutung als Biokatalysatoren bei Stoffwechselreak tionen (UF1, UF3, UF4).	Schematische Darstellungen von Reaktionen unter besonderer Berücksichtigung der Energieniveaus	Die zentralen Aspekte der Biokatalyse werden erarbeitet: 1. Senkung der Aktivierung senergie 2. Erhöhung des Stoffumsat zes pro Zeit
Was beeinflusst die Wirkung / Funktion von Enzymen? • pH- Abhängigkeit • Temperaturab hängigkeit • Schwermetall e • Substratkonze ntration / Wechselzahl	beschreiben und interpretieren Diagramme zu enzymatischen Reaktionen (E5). stellen Hypothesen zur Abhängigkeit der Enzymaktivität von verschiedenen Faktoren auf und überprüfen sie experimentell und stellen sie graphisch dar (E3, E2, E4, E5, K1, K4).	Experimente	Verbindlicher Beschluss der Fachkonferenz: Das Beschreiben und Interpretieren von Diagrammen wird geübt. Experimente zur Ermittlung der Abhängigkeiten der Enzymaktivität werden geplant und durchgeführt. Wichtig: Denaturierung im Sinne einer irreversiblen Hemmung durch Temperatur, pH- Wert und Schwermetalle muss herausgestellt werden. Verbindlicher Beschluss der Fachkonferenz: Durchführung von Experimenten zur Ermittlung

Wie wird die Aktivität der Enzyme in den Zellen reguliert? • kompetitive Hemmung, • allosterische (nicht kompetitive) Hemmung • Substrat und Endprodukthe mmung	beschreiben und erklären mithilfe geeigneter Modelle Enzymaktivität und Enzymhemmung (E6).	Gruppenarbeit Informationsmat erial zu allosterischer Hemmung und kompetitiver Hemmung Modellexperimen te z.B. aus Knete, Moosgummi, Styropor etc.	von Enzymeigenscha ften an ausgewählten Beispielen. Wesentliche Textinformationen werden in einem begrifflichen Netzwerk zusammengefasst . Die kompetitive Hemmung wird simuliert. Modelle zur Erklärung von Hemmvorgängen werden entwickelt.
Wie macht man sich die Wirkweise von Enzymen zu Nutze? • Enzyme im Alltag - Nahrungsmit tel - Technik - Medizin - u. a.	recherchieren Informationen zu verschiedenen Einsatzgebieten von Enzymen und präsentieren und bewerten vergleichend die Ergebnisse (K2, K3, K4). geben Möglichkeiten und Grenzen für den Einsatz von Enzymen in biologisch- technischen Zusammenhänge n an und wägen die Bedeutung für unser heutiges Leben ab (B4).	z.B. (Internet)Recherc he, Plakate, Galeriegang	Modellkritik Als Beispiel können Enzyme im Waschmittel besprochen werden
Leistungsbewertung: • multiple choice	-Tests		

18 LiS.NRW

- KLP-Überprüfungsform: "experimentelle Aufgabe" (z.B. Entwickeln eines Versuchsaufbaus in Bezug auf eine zu Grunde liegende Fragestellung und/oder Hypothese) zur Ermittlung der Versuchsplanungskompetenz (E4)
- ggf. Klausur

Mögliche unterrichtsvorhabenbezogene Konkretisierung:

Unterrichtsvorhaben V:			
Thema/Kontext: Biologie und Sport - Welchen Einfluss hat körperliche			hat körperliche
Aktivität auf unseren Körper?			
•	Inhaltsfeld: IF 2 (Energiestoffwechsel)		
Inhaltliche Schwerpu	nkte:	Schwerpunkte	übergeordneter
 Dissimilation 		Kompetenzerwartur	
Körperliche Aktivität	und Stoffwechsel	Die Schülerinnen und	d Schüler können
Zeitbedarf: ca. 26 Std.		 UF3 die Einordr Sachverhalte und gegebene fach begründen. B1 bei der Sachverhalten naturwissenschaf Zusammenhänge gesellschaftliche Bewertungskriteri B2 in Situatione Handlungsoptione Entscheidungsme kriteriengeleitet gewichten und e Standpunkt bezie B3 in Zusammenhänge Konflikte Auseinandersetzu biologischen sowie möglich darstellen. 	en fachliche, und moralische en angeben. en mit mehreren en öglichkeiten abwägen, inen begründeten hen. bekannten en ethische bei ungen mit Fragestellungen ehe Lösungen
Mögliche	Konkretisierte	Empfohlene	Didaktisch-
didaktische	Kompetenzerwa	Lehrmittel/	methodische
Leitfragen /	rtungen des	Materialien/	Anmerkungen
Sequenzierung	Kernlehrplans	Methoden	und
inhaltlicher Aspekte	Die Schülerinnen		Empfehlungen
	und Schüler		sowie
			Darstellung der
			verbindlichen
			Absprachen

			der Fachkonferenz
Wie reagiert der Körper auf unterschiedliche Belastungssituatione n und wie unterscheiden sich verschiedene Muskelgewebe voneinander? Systemebene: Organ und Gewebe • Muskelaufbau Systemebene: Zelle • Sauerstoffsch uld, Energiereserv e der Muskeln, Glykogenspei cher	erläutern den Unterschied zwischen roter und weißer Muskulatur (UF1). präsentieren unter Einbezug geeigneter Medien und unter Verwendung einer korrekten Fachsprache die aerobe und anaerobe Energieumwandl ung in Abhängigkeit von körperlichen Aktivitäten (K3, UF1). überprüfen Hypothesen zur Abhängigkeit der Gärung von verschiedenen Faktoren (E3, E2, E1, E4, E5, K1, K4).		Verschiedene Muskelgewebe werden im Hinblick auf ihre Mitochondriendi chte (stellvertretend für den Energiebedarf) untersucht / ausgewertet. Muskeltypen werden begründend Sportarten zugeordnet.
Welche Faktoren beeinflussen den Energieumsatz und welche Methoden helfen bei der Bestimmung? Systemebenen: Organismus, Gewebe, Zelle, Molekül Energieumsat z (Grundumsatz und Leistungsums atz) Direkte und	stellen Methoden zur Bestimmung des Energieumsatzes bei körperlicher Aktivität vergleichend dar (UF4).	Film zur Bestimmung des Grund- und Leistungsumsatzes Film zum Verfahren der Kalorimetrie (Kalorimetrische Bombe / Respiratorischer Quotient) Diagramme zum	Der Zusammenhang zwischen respiratorischem Quotienten und Ernährung wird erarbeitet. Der quantitative Zusammenhang
indirekte Kalorimetrie		Sauerstoffbindungs vermögen in	zwischen Sauerstoffbindu

	,	<u></u>	
Welche Faktoren spielen eine Rolle bei körperlicher Aktivität? Sauerstofftran sport im Blut Sauerstoffkon zentration im Blut Erythrozyten Hämoglobin/ Myoglobin Bohr-Effekt		Abhängigkeit verschiedener Faktoren (Temperatur, pH- Wert) und Bohr- Effekt Arbeitsblatt mit Informationstext zur Erarbeitung des Prinzips der Oberflächenvergröß erung durch Kapillarisierung	ng und Partialdruck wird an einer sigmoiden Bindungskurve ermittelt. Der Weg des Sauerstoffs in die Muskelzelle über den Blutkreislauf wird wiederholt und erweitert unter Berücksichtigun g von
			Hämoglobin und
Wie entsteht und wie gelangt die benötigte Energie zu unterschiedlichen Einsatzorten in der Zelle? Systemebene: Molekül NAD+ und ATP	erläutern die Bedeutung von NAD+ und ATP für aerobe und anaerobe Dissimilationsvor gänge (UF1, UF4).	Arbeitsblatt mit Modellen / Schemata zur Rolle des ATP	Myoglobin. Die Funktion des ATP als Energie- Transporter wird verdeutlicht.
Wie entsteht ATP und wie wird der C6- Körper abgebaut? Systemebenen: Zelle, Molekül Tracermethod	präsentieren eine Tracermethode bei der Dissimilation adressatengerec ht (K3).	Advance Organizer Arbeitsblatt mit histologischen Elektronenmikrosko pie-Aufnahmen und Tabellen	Grundprinzipien von molekularen Tracern werden wiederholt.
Glykolyse Zitronensäure zyklus Atmungskette	erklären die Grundzüge der Dissimilation unter dem Aspekt der Energieumwandl ung mithilfe einfacher Schemata (UF3). beschreiben und präsentieren die ATP-Synthese im Mitochondrium mithilfe	Informationstexte und schematische Darstellungen zu Experimenten von Peter Mitchell (chemiosmotische Theorie) zum Aufbau eines Protonengradienten in den Mitochondrien für die ATP-Synthase (vereinfacht)	Experimente werden unter dem Aspekt der Energieumwandl ung ausgewertet.

	vereinfachter Schemata (UF2,		
Wie funktional sind bestimmte Trainingsprogramme und Ernährungsweisen für bestimmte Trainingsziele? Systemebenen: Organismus, Zelle, Molekül Ernährung und Fitness Kapillarisierun g Mitochondrien Systemebene: Molekül Glycogenspei cherung Myoglobin	erläutern unterschiedliche Trainingsformen adressatengerec ht und begründen sie mit Bezug auf die Trainingsziele (K4). erklären mithilfe einer graphischen Darstellung die zentrale Bedeutung des Zitronensäurezykl us im Zellstoffwechsel (E6, UF4).	Fallstudien aus der Fachliteratur (Sportwissenschafte n) Arbeitsblatt mit einem vereinfachten Schema des Zitronensäurezyklus und seiner Stellung im Zellstoffwechsel (Zusammenwirken von Kohlenhydrat, Fett und Proteinstoffwechsel)	Hier können Trainingsprogra mme und Ernährung unter Berücksichtigun g von Trainingszielen (Aspekte z.B. Ausdauer, Kraftausdauer, Maximalkraft) und der Organ- und Zellebene (Mitochondriena nzahl, Myoglobinkonze ntration, Kapillarisierung, erhöhte Glykogenspeich erung) betrachtet, diskutiert und beurteilt werden. Verschiedene Situationen können "durchgespielt" (z.B. die Folgen einer Fett-, Vitamin- oder Zuckeruntervers orgung) werden.
Wie wirken sich leistungssteigernde Substanzen auf den Körper aus? Systemebenen: Organismus, Zelle, Molekül Formen des Dopings Anabo lika EPO	nehmen begründet Stellung zur Verwendung leistungssteigern der Substanzen aus gesundheitlicher und ethischer Sicht (B1, B2, B3).	Informationstext zu Werten, Normen, Fakten Informationstext zum ethischen Reflektieren (nach Martens 2003) Informationstext zu EPO Historische Fallbeispiele zum Einsatz von EPO	Juristische und ethische Aspekte werden auf die ihnen zugrunde liegenden Kriterien reflektiert.

	(Blutdoping) im	Verschiedene
	Spitzensport	Perspektiven
		und deren
	Weitere	Handlungsoption
	Fallbeispiele zum	en werden
	Einsatz anaboler	erarbeitet, deren
	Steroide in	Folgen
	Spitzensport und	abgeschätzt und
	Viehzucht	bewertet.
		Bewertungsverfa
		hren und
		Begriffe werden
		geübt und
		gefestigt.
Diagnosa van Schülarkompotonzon:	·	·

<u>Diagnose von Schülerkompetenzen:</u>

Leistungsbewertung:

• ggf. Klausur.

Unterrichtsvorha	Unterrichtsvorhaben V:		
Thema/Kontext:	Thema/Kontext: Kein Leben ohne Zelle II – Welche Bedeutung haben		
	Zellkern und Nukleinsäuren für das Leben?		
Inhaltsfeld: IF 1 (B			
Inhaltliche Schwerpunkte:		Schwerpunkte	übergeordneter
• Funktion des Zellkerns		Kompetenzerwartun	•
	olung und DNA	Die Schülerinnen und	
20.1701.000	ording arra Druk	 UF4 bestehendes 	s Wissen aufgrund
Zeitbedarf: ca. 12	Std. à 45 Minuten		er Erfahrungen und
		Erkenntnisse r	
		reorganisieren.	
			benen Situationen
		5 5	eme beschreiben, in
			rlegen und dazu
		biologische	Fragestellungen
		formulieren.	
		• K4 biologische	Aussagen und
		Behauptungen mit	t sachlich fundierten
			nden Argumenten
		begründen bzw. kı	ritisieren.
		 B4 Möglichkeite 	n und Grenzen
		biologischer Pro	blemlösungen und
		Sichtweisen mit	Bezug auf die
		Zielsetzungen	der
		Naturwissenschaft	ten darstellen.
Mögliche	Konkretisierte	Empfohlene	Didaktisch-
didaktische	Kompetenzerwart	Lehrmittel/	methodische An-
Leitfragen /	ungen des	Materialien/	merkungen und
Sequenzierung	Kernlehrplans	Methoden	Empfehlungen
inhaltlicher	Die Schülerinnen		sowie
Aspekte	und Schüler		Darstellung der

			verbindlichen Absprachen der Fachkonferenz
Erhebung und Reaktivierung von SI-Vorwissen		Mind map	Empfehlung: Zentrale Begriffe werden von den SuS in eine sinnvolle Struktur gebracht
Was zeichnet eine naturwissenschaft liche Fragestellung aus und welche Fragestellung lag den Acetabularia und den Xenopus- Experimenten zugrunde? • Erforschun g der Funktion des Zellkerns in der Zelle	benennen Fragestellungen historischer Versuche zur Funktion des Zellkerns und stellen Versuchsdurchführ ungen und Erkenntniszuwach s dar (E1, E5, E7). werten Klonierungsexperi mente (Kerntransfer bei Xenopus) aus und leiten ihre Bedeutung für die Stammzellforschu ng ab (E5).	Plakat zum wissenschaftlichen Erkenntnisweg Acetabularia- Experimente Hämmerling Experiment Kerntransfer Xenopus zum bei	Naturwissenschaftl iche Fragestellungen werden kriteriengeleitet entwickelt und Experimente ausgewertet.
Welche biologische Bedeutung hat die Mitose für einen Organismus? • Mitose (Rückbezu g auf Zelltheorie) • Interphase	begründen die biologische Bedeutung der Mitose auf der Basis der Zelltheorie (UF1, UF4). erläutern die Bedeutung des Cytoskeletts für [den intrazellulären Transport und] die Mitose (UF3, UF1).	Informationstexte und Abbildungen Filme/Animationen zu zentralen Aspekten: 1. exakte Reproduktion 2. Organ- bzw. Gewebewachstu m und Erneuerung (Mitose) 3. Zellwachstum (Interphase)	Die Funktionen des Cytoskeletts werden erarbeitet, Informationen werden in ein Modell übersetzt, das die wichtigsten Informationen sachlich richtig wiedergibt.
Wie ist die DNA aufgebaut, wo findet man sie	ordnen die biologisch bedeut- samen Makromoleküle		

24 LiS.NRW

und wi kopier	ie wird sie t? Aufbau und Vorkomme n von	[Koh-lenhydrate, Lipide, Proteine,] Nucleinsäuren den verschie-denen zellulären Strukturen und		
	Nukleinsä uren	Funktionen zu und erläu-tern sie bezüglich ihrer we- sentlichen chemischen Ei- genschaften (UF1, UF3).	Modellbaukasten zur DNA Struktur und Replikation http://www.ipn.uni- kiel.de/eibe/UNIT06 DE.PDF	Der DNA-Aufbau und die Replikation werden lediglich modellhaft erarbeitet. Die Komplementarität
•	Aufbau der DNA	erklären den Aufbau der DNA mithilfe eines		wird dabei herausgestellt.
•	Mechanis mus der DNA-	Strukturmodells (E6, UF1).		
	Replikatio n in der S- Phase der Interphase	beschreiben den semikonservativen Mechanismus der DNA-Replikation (UF1, UF4).		
Welch	ne	zeigen	Informationsblatt	Zentrale Aspekte
Grenz	-	Möglichkeiten und Grenzen der	zu Zellkulturen in der Biotechnologie	werden herausgearbeitet.
Grenze bester Zellkui		Möglichkeiten und		werden herausgearbeitet.
Grenze bester Zellkui	en hen für die Iturtechnik? turtechnik Biotechnol ogie	Möglichkeiten und Grenzen der Zellkulturtechnik in der Biotechnologie	der Biotechnologie und Medizin- und Pharmaforschung Rollenkarten zu Vertretern	werden herausgearbeitet. Argumente werden erarbeitet und
Grenze bester Zellkui	en nen für die Iturtechnik? turtechnik Biotechnol ogie Biomedizi n	Möglichkeiten und Grenzen der Zellkulturtechnik in der Biotechnologie und Biomedizin	der Biotechnologie und Medizin- und Pharmaforschung Rollenkarten zu Vertretern unterschiedlicher Interessensverbänd	werden herausgearbeitet. Argumente werden erarbeitet und Argumentationsstr ategien entwickelt.
Grenze bester Zellkui	en nen für die Iturtechnik? turtechnik Biotechnol ogie Biomedizi	Möglichkeiten und Grenzen der Zellkulturtechnik in der Biotechnologie und Biomedizin	der Biotechnologie und Medizin- und Pharmaforschung Rollenkarten zu Vertretern unterschiedlicher	werden herausgearbeitet. Argumente werden erarbeitet und Argumentationsstr ategien entwickelt. SuS, die nicht an der Diskussion beteiligt sind,
Grenze bester Zellkui	nen für die Iturtechnik? turtechnik Biotechnol ogie Biomedizi n Pharmaze utische	Möglichkeiten und Grenzen der Zellkulturtechnik in der Biotechnologie und Biomedizin	der Biotechnologie und Medizin- und Pharmaforschung Rollenkarten zu Vertretern unterschiedlicher Interessensverbänd e (Pharma-Industrie, Forscher, PETA-Vertreter etc.) Pro und Kontra-Diskussion zum	werden herausgearbeitet. Argumente werden erarbeitet und Argumentationsstr ategien entwickelt. SuS, die nicht an der Diskussion beteiligt sind, sollten einen Beobachtungsauftr ag bekommen.
Grenze bester Zellkui	nen für die Iturtechnik? turtechnik Biotechnol ogie Biomedizi n Pharmaze utische	Möglichkeiten und Grenzen der Zellkulturtechnik in der Biotechnologie und Biomedizin	der Biotechnologie und Medizin- und Pharmaforschung Rollenkarten zu Vertretern unterschiedlicher Interessensverbänd e (Pharma-Industrie, Forscher, PETA-Vertreter etc.) Pro und Kontra-	werden herausgearbeitet. Argumente werden erarbeitet und Argumentationsstr ategien entwickelt. SuS, die nicht an der Diskussion beteiligt sind, sollten einen Beobachtungsauftr
Grenze bester Zellkui	nen für die Iturtechnik? turtechnik Biotechnol ogie Biomedizi n Pharmaze utische	Möglichkeiten und Grenzen der Zellkulturtechnik in der Biotechnologie und Biomedizin	der Biotechnologie und Medizin- und Pharmaforschung Rollenkarten zu Vertretern unterschiedlicher Interessensverbänd e (Pharma-Industrie, Forscher, PETA-Vertreter etc.) Pro und Kontra-Diskussion zum Thema: "Können	werden herausgearbeitet. Argumente werden erarbeitet und Argumentationsstr ategien entwickelt. SuS, die nicht an der Diskussion beteiligt sind, sollten einen Beobachtungsauftr ag bekommen. Nach Reflexion der Diskussion
Grenz bester Zellkuli Zellkuli	en hen für die lturtechnik? turtechnik Biotechnol ogie Biomedizi n Pharmaze utische Industrie	Möglichkeiten und Grenzen der Zellkulturtechnik in der Biotechnologie und Biomedizin	der Biotechnologie und Medizin- und Pharmaforschung Rollenkarten zu Vertretern unterschiedlicher Interessensverbänd e (Pharma-Industrie, Forscher, PETA-Vertreter etc.) Pro und Kontra-Diskussion zum Thema: "Können Zellkulturen Tierversuche	werden herausgearbeitet. Argumente werden erarbeitet und Argumentationsstr ategien entwickelt. SuS, die nicht an der Diskussion beteiligt sind, sollten einen Beobachtungsauftr ag bekommen. Nach Reflexion der Diskussion können Leserbriefe
Grenz bester Zellkult Zellkult	en hen für die lturtechnik? turtechnik Biotechnol ogie Biomedizi n Pharmaze utische Industrie	Möglichkeiten und Grenzen der Zellkulturtechnik in der Biotechnologie und Biomedizin auf (B4, K4).	der Biotechnologie und Medizin- und Pharmaforschung Rollenkarten zu Vertretern unterschiedlicher Interessensverbänd e (Pharma-Industrie, Forscher, PETA-Vertreter etc.) Pro und Kontra-Diskussion zum Thema: "Können Zellkulturen Tierversuche	werden herausgearbeitet. Argumente werden erarbeitet und Argumentationsstr ategien entwickelt. SuS, die nicht an der Diskussion beteiligt sind, sollten einen Beobachtungsauftr ag bekommen. Nach Reflexion der Diskussion können Leserbriefe

2.2 Grundsätze der fachmethodischen und fachdidaktischen Arbeit

In Absprache mit der Lehrerkonferenz sowie unter Berücksichtigung des Schulprogramms hat die Fachkonferenz Biologie die folgenden fachmethodischen und fachdidaktischen Grundsätze beschlossen. In diesem Zusammenhang beziehen sich die Grundsätze 1 bis 14 auf fächerübergreifende Aspekte, die auch Gegenstand der Qualitätsanalyse sind, die Grundsätze 15 bis 25 sind fachspezifisch angelegt.

Überfachliche Grundsätze:

- 1.) Geeignete Problemstellungen zeichnen die Ziele des Unterrichts vor und bestimmen die Struktur der Lernprozesse.
- 2.) Inhalt und Anforderungsniveau des Unterrichts entsprechen dem Leistungsvermögen der Lerner.
- 3.) Die Unterrichtsgestaltung ist auf die Ziele und Inhalte abgestimmt.
- 4.) Medien und Arbeitsmittel sind lernernah gewählt.
- 5.) Die Schülerinnen und Schüler erreichen einen Lernzuwachs.
- 6.) Der Unterricht fördert und fordert eine aktive Teilnahme der Lerner.
- 7.) Der Unterricht fördert die Zusammenarbeit zwischen den Lernenden und bietet ihnen Möglichkeiten zu eigenen Lösungen.
- 8.) Der Unterricht berücksichtigt die individuellen Lernwege der einzelnen Lerner.
- 9.) Die Lerner erhalten Gelegenheit zu selbstständiger Arbeit und werden dabei unterstützt.
- 10.) Der Unterricht fördert strukturierte und funktionale Einzel-, Partner- bzw. Gruppenarbeit sowie Arbeit in kooperativen Lernformen.
- 11.) Der Unterricht fördert strukturierte und funktionale Arbeit im Plenum.
- 12.) Die Lernumgebung ist vorbereitet; der Ordnungsrahmen wird eingehalten.
- 13.) Die Lehr- und Lernzeit wird intensiv für Unterrichtszwecke genutzt.
- 14.) Es herrscht ein positives pädagogisches Klima im Unterricht.

Fachliche Grundsätze:

- 15.) Der Biologieunterricht orientiert sich an den im gültigen Kernlehrplan ausgewiesenen, obligatorischen Kompetenzen.
- 16.) Der Biologieunterricht ist problemorientiert und an Unterrichtsvorhaben und Kontexten ausgerichtet.
- 17.) Der Biologieunterricht ist lerner- und handlungsorientiert, d.h. im Fokus steht das Erstellen von Lernprodukten durch die Lerner.
- 18.) Der Biologieunterricht ist kumulativ, d.h. er knüpft an die Vorerfahrungen und das Vorwissen der Lernenden an und ermöglicht das Erlernen von neuen Kompetenzen.
- 19.) Der Biologieunterricht fördert vernetzendes Denken und zeigt dazu eine über die verschiedenen Organisationsebenen bestehende Vernetzung von biologischen Konzepten und Prinzipien mithilfe von Basiskonzepten auf.
- 20.) Der Biologieunterricht folgt dem Prinzip der Exemplarizität und gibt den Lernenden die Gelegenheit, Strukturen und Gesetzmäßigkeiten möglichst anschaulich in den ausgewählten Problemen zu erkennen.
- 21.) Der Biologieunterricht bietet nach Produkt-Erarbeitungsphasen immer auch Phasen der Metakognition, in denen zentrale Aspekte von zu erlernenden Kompetenzen reflektiert werden.
- 22.) Der Biologieunterricht ist in seinen Anforderungen und im Hinblick auf die zu erreichenden Kompetenzen für die Lerner transparent.

26 QUA-

23.) Der Biologieunterricht bietet immer wieder auch Phasen der Übung.

2.3 Grundsätze der Leistungsbewertung und Leistungsrückmeldung

Beurteilungsbereich: Sonstige Mitarbeit

Vgl. Leistungsmessungskonzept f
 ür das Fach Biologie

Beurteilungsbereich: Klausuren

Einführungsphase:

In der Einführungsphase wird pro Halbjahr eine Klausur (90 Minuten) geschrieben.

Qualifikationsphase 1:

2 Klausuren pro Halbjahr (je 135 Minuten im GK und je 180 Minuten im LK), wobei in einem Fach die erste Klausur im 2. Halbjahr durch 1 Facharbeit ersetzt werden kann bzw. muss.

Qualifikationsphase 2.1:

2 Klausuren pro Halbjahr (je 135 Minuten im GK und je 180 Minuten im LK).

Qualifikationsphase 2.2:

1 Klausur, die – was den formalen Rahmen angeht – unter Abiturbedingungen geschrieben wird.

Die Leistungsbewertung in den Klausuren wird mit Blick auf die schriftliche Abiturprüfung mit Hilfe eines Kriterienrasters ("Erwartungshorizont") durchgeführt, welches neben den inhaltsbezogenen Teilleistungen auch darstellungsbezogene Leistungen ausweist. Dieses Kriterienraster wird den korrigierten Klausuren beigelegt und Schülerinnen und Schülern auf diese Weise transparent gemacht.

Festlegung der Reihenfolge der Unterrichtsvorhaben in der Qualifikationsphase Biologie/Oberstufe

Die Fachschaft Biologie hat sich nach eingehender Prüfung der Möglichkeiten sowie einer Diskussion über die Vor- und Nachteile der verschiedenen Abfolgen für die "Variante B" des Vorschlags der Implementationsveranstaltung entschieden

1	Genetik	Q1 1. Hj.
2	Stoffwechsel	Q1 1. und 2. Hj.
3	Ökologie	Q1 2. und Q2 1. Hj.
4	Evolution	Q2 1. Hj.
	Neurophysiologie	Q1 2. Hj.

Beispiel für einen schulinternen Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe

Biologie

(Entwurf: Fassung vom 09.06.2022)

Hinweis:

Gemäß § 29 Absatz 2 des Schulgesetzes bleibt es der Verantwortung der Schulen überlassen, auf der Grundlage der Kernlehrpläne in Verbindung mit

ihrem Schulprogramm schuleigene Unterrichtsvorgaben zu gestalten, welche Verbindlichkeit herstellen, ohne pädagogische Gestaltungsspielräume unzulässig einzuschränken.

Den Fachkonferenzen kommt hier eine wichtige Aufgabe zu: Sie sind verantwortlich für die schulinterne Qualitätssicherung und Qualitätsentwicklung der fachlichen Arbeit und legen Ziele, Arbeitspläne sowie Maßnahmen zur Evaluation und Rechenschaftslegung fest. Sie entscheiden in ihrem Fach außerdem über Grundsätze zur fachdidaktischen und fachmethodischen Arbeit, über Grundsätze zur Leistungsbewertung und über Vorschläge an die Lehrerkonferenz zur Einführung von Lernmitteln (§ 70 SchulG).

Getroffene Verabredungen und Entscheidungen der Fachgruppen werden in schulinternen Lehrplänen dokumentiert und können von Lehrpersonen,

Lernenden und Erziehungsberechtigten eingesehen werden. Während Kernlehrpläne die erwarteten Lernergebnisse des Unterrichts festlegen, beschreiben schulinterne Lehrpläne schulspezifisch Wege, auf denen diese Ziele erreicht werden sollen.

Als ein Angebot, Fachkonferenzen im Prozess der gemeinsamen Unterrichtsentwicklung zu unterstützen, steht hier ein Beispiel für einen schulinternen Lehrplan eines fiktiven Gymnasiums für das Fach Biologie zur Verfügung.

Das Angebot kann gemäß den jeweiligen Bedürfnissen vor Ort frei genutzt,

verändert und angepasst werden. Dabei bieten sich insbesondere die beiden folgenden Möglichkeiten des Vorgehens an:

- Fachgruppen können ihre bisherigen schulinternen Lehrpläne mithilfe der im Angebot ausgewiesenen Hinweise bzw. dargelegten Grundprinzipien auf der Grundlage des neuen Kernlehrplans überarbeiten.
- Fachgruppen können das vorliegende Beispiel mit den notwendigen schulspezifischen Modifikationen und ggf. erforderlichen Ausschärfungen vollständig oder in Teilen übernehmen.

Das vorliegende Beispiel für einen schulinternen Lehrplan berücksichtigt in

seinen Kapiteln die obligatorischen Beratungsgegenstände der Fachkonferenz. Eine Übersicht über die Abfolge aller Unterrichtsvorhaben des Fachs ist enthalten und für alle Lehrpersonen der Beispielschule einschließlich der vorgenommenen Schwerpunktsetzungen verbindlich.

Auf dieser Grundlage plant und realisiert jede Lehrkraft ihren Unterricht in

eigener Zuständigkeit und pädagogischer Verantwortung. Konkretisierte Unterrichtsvorhaben, wie sie exemplarisch im Lehrplannavigator NRW unter

"Hinweise und Materialien" zu finden sind, besitzen demgemäß nur empfehlenden Charakter und sind somit nicht zwingender Bestandteil eines schulinternen Lehrplans. Sie dienen der individuellen Unterstützung der Lehrerinnen und Lehrer.

1 Rahmenbedingungen der fachlichen Arbeit

[...]

2 Entscheidungen zum Unterricht

Die Umsetzung des Kernlehrplans mit seinen verbindlichen Kompetenzerwartungen im Unterricht erfordert Entscheidungen auf verschiedenen Ebenen:

Die Übersicht über die *Unterrichtsvorhaben* gibt den Lehrkräften eine rasche Orientierung bezüglich der laut Fachkonferenz verbindlichen Unterrichtsvorhaben und der damit verbundenen Schwerpunktsetzungen für jedes Schuljahr.

Die Unterrichtsvorhaben im schulinternen Lehrplan sind die vereinbarte Planungsgrundlage des Unterrichts. Sie bilden den Rahmen zur systematischen Anlage und Weiterentwicklung sämtlicher im Kernlehrplan angeführter Kompetenzen, setzen jedoch klare Schwerpunkte. Sie geben Orientierung, welche Kompetenzen in einem Unterrichtsvorhaben besonders gut entwickelt werden können und berücksichtigen dabei die obligatorischen Inhaltsfelder und inhaltlichen Schwerpunkte. Dies entspricht der Verpflichtung jeder Lehrkraft, alle Kompetenzerwartungen des Kernlehrplans bei den Lernenden auszubilden und zu fördern.

30 LiS.NRW In weiteren Absätzen dieses Kapitels werden *Grundsätze der* fachdidaktischen und fachmethodischen Arbeit, Grundsätze der Leistungsbewertung und Leistungsrückmeldung sowie Entscheidungen zur Wahl der Lehr- und Lernmittel festgehalten, um die Gestaltung von Lernprozessen und die Bewertung von Lernergebnissen im erforderlichen Umfang auf eine verbindliche Basis zu stellen.

2.1 Unterrichtsvorhaben

In der nachfolgenden Übersicht über die Unterrichtsvorhaben wird die für alle Lehrerinnen und Lehrer gemäß Fachkonferenzbeschluss verbindliche Verteilung der Unterrichtsvorhaben dargestellt. Die Übersicht dient dazu, für die einzelnen Jahrgangsstufen allen am Bildungsprozess Beteiligten einen schnellen Überblick über Themen bzw. Fragestellungen der Unterrichtsvorhaben unter Angabe besonderer Schwerpunkte in den Inhalten und in der Kompetenzentwicklung zu verschaffen.

Der ausgewiesene Zeitbedarf versteht sich als grobe Orientierungsgröße, die nach Bedarf über- oder unterschritten werden kann. Der schulinterne Lehrplan ist so gestaltet, dass er zusätzlichen Spielraum für Vertiefungen, besondere Interessen von Schülerinnen und Schülern, aktuelle Themen bzw. die Erfordernisse anderer besonderer Ereignisse (z.B. Praktika, Studienfahrten o.Ä.) belässt. Abweichungen über die notwendigen Absprachen hinaus sind im Rahmen des pädagogischen Gestaltungsspielraumes der Lehrkräfte möglich. Sicherzustellen bleibt allerdings auch hier, dass im Rahmen der Umsetzung der Unterrichtsvorhaben insgesamt alle Kompetenzerwartungen des Kernlehrplans Berücksichtigung finden.

Übersicht über die Unterrichtsvorhaben

EINFÜHRUNGSPHASE

UV Z1: Aufbau und Funktion der Zelle

Inhaltsfeld 1: Zellbiologie

Zeitbedarf: ca. 24 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Aufbau der Zelle, Fachliche Verfahren: Mikroskopie

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Fachspezifische Modelle und Verfahren charakterisieren, auswählen und zur Untersuchung von Sachverhalten nutzen (E)
- Informationen erschließen (K)
- Informationen aufbereiten (K)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
 Mikroskopie prokaryotische Zelle eukaryotische Zelle 	 vergleichen den Aufbau von prokaryotischen und eukaryotischen Zellen (S1, S2, K1, K2, K9). begründen den Einsatz unterschiedlicher mikroskopischer Techniken für verschiedene Anwendungsgebiete (S2, E2, E9, E16, K6). 	Welche Strukturen können bei prokaryotischen und eukaryotischen Zellen mithilfe verschiedener mikroskopischer Techniken sichtbar gemacht werden? (ca. 6 Ustd.)
 eukaryotische Zelle: Zusammenwirken von Zellbestandteilen, Kompartimentierung , 	 erklären Bau und Zusammenwirken der Zellbestandteile eukaryotischer Zellen und erläutern die Bedeutung der Kompartimentierung (S2, S5, K5, K10). 	Wie ermöglicht das Zusammenwirken der einzelnen Zellb estandteile die Leb ensvorgänge in einer Zelle? (ca. 6 Ustd.)

32 QUA-LiS.NRW

	Konkretisierte Kompetenzerwartungen	
Inhaltliche Aspekte	Schülerinnen und Schüler	Sequenzierung: Leitfragen
Endosymbiontenthe orie	erläutern theoriegeleitet den prokaryotischen Ursprung von Mitochondrien und Chloroplasten (E9, K7).	Welche Erkenntnisse über den Bau von Mitochondrien und Chloroplasten stützen die Endosymbiontentheorie?
		(ca. 2 Ustd.)
Vielzeller: Zelldifferenzierung und Arbeitsteilung Mikroskopie	analysieren differenzierte Zelltypen mithilfe mikroskopischer Verfahren (S5, E7, E8, E13, K10).	Welche morphologischen Angepasstheiten weisen verschiedene Zelltypen von Pflanzen und Tieren in Bezug auf ihre Funktionen auf? (ca. 6 Ustd.)
	vergleichen einzellige und vielzellige Lebewesen und erläutern die jeweiligen Vorteile ihrer Organisationsform (S3, S6, E9, K7, K8).	Welche Vorteile haben einzellige und vielzellige Organisationsformen? (ca. 4 Ustd.)

UV Z2: Biomembranen

Inhaltsfeld 1: Zellbiologie

Zeitbedarf: ca. 22 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Biochemie der Zelle, Fachliche Verfahren: Untersuchung von os motischen Vorgängen

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Fachspezifische Modelle und Verfahren charakterisieren, auswählen und zur Untersuchung von Sachverhalten nutzen (E)
- Erkenntnisprozesse und Ergebnisse interpretieren und reflektieren (E)
- Merkmale wissenschaftlicher Aussagen und Methoden charakterisieren und reflektieren (E)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Stoffgruppen: Kohlenhydrate, Lipide, Proteine	 erläutern die Funktionen von Biomembranen anhand ihrer stofflichen Zusammensetzung und räumlichen Organisation (S2, S5–7, K6). 	Wie hängen Strukturen und Eigenschaften der Moleküle des Lebens zusammen? (ca. 5 Ustd.)
Biomembranen: Transport, Prinzip der Signaltransduktion, Zell-Zell- Erkennung	 stellen den Erkenntniszuwachs zum Aufbau von Biomembranen durch technischen Fortschritt und Modellierungen an Beispielen dar (E12, E15–17). 	Wie erfolgte die Aufklärung der Struktur von Biomembranen und welche Erkenntnisse führten zur Weiterentwicklung der jeweiligen Modelle? (ca. 6 Ustd.)

34 QUA-LiS.NRW

		,
	Konkretisierte Kompetenzerwartungen	
• Inhaltliche Aspekte	Schülerinnen und Schüler	Sequenzierung: Leitfragen
 physiologische Anpassungen: Homöostase Untersuchung von osmotischen Vorgängen 	 erklären experimentelle Befunde zu Diffusion und Osmose mithilfe von Modellvorstellungen (E4, E8, E10– 14). 	Wie können Zellmembranen einerseits die Zelle nach außen ab grenzen und andererseits doch durchlässig für Stoffe sein?
	 erläutern die Funktionen von Biomembranen anhand ihrer stofflichen Zusammensetzung und räumlichen Organisation (S2, S5–7, K6). 	(ca. 8 Ustd.)
	 erklären die Bedeutung der Homöostase des osmotischen Werts für zelluläre Funktionen und leiten mögliche Auswirkungen auf den Organismus ab (S4, S6, S7, K6, K10). 	
	 erläutern die Funktionen von Biomembranen anhand ihrer stofflichen Zusammensetzung und räumlichen Organisation (S2, S5–7, K6). 	Wie können extrazelluläre Botenstoffe, wie zum Beispiel Hormone, eine Reaktion in der Zelle auslösen? (ca. 2 Ustd.)
		Welche Strukturen sind für die Zell- Zell-Erkennung in einem Organismus verantwortlich? (ca. 1 Ustd.)

UV Z3: Mitose, Zellzyklus und Meiose

Inhaltsfeld 1: Zellbiologie

Zeitbedarf: ca. 22 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Genetik der Zelle, Fachliche Verfahren: Analyse von Familienstammbäumen

Schwerpunkte der Kompetenzbereiche:

• Informationen austauschen und wissenschaftlich diskutieren (K)

- Sachverhalte und Informationen multiperspektivisch beurteilen (B)
- Kriteriengeleitet Meinungen bilden und Entscheidungen treffen (B)
- Entscheidungsprozesse und Folgen reflektieren (B)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Mitose: Chromosomen, Cytoskelett Zellzyklus: Regulation	erklären die Bedeutung der Regulation des Zellzyklus für Wachstum und Entwicklung (S1, S6, E2, K3).	Wie verläuft eine kontrollierte Vermehrung von Körperzellen? (ca. 6 Ustd.)
	begründen die medizinische Anwendung von Zellwachstumshemmern (Zytostatika) und nehmen zu den damit verbundenen Risiken Stellung (S3, K13, B2, B6–B9).	Wie kann unkontrolliertes Zellwachstum gehemmt werden und welche Risiken sind mit der Behandlung verbunden? (ca. 2 Ustd.)
	 diskutieren kontroverse Positionen zum Einsatz von embryonalen Stammzellen (K1-4, K12, B1-6, B10-B12). 	Welche Ziele verfolgt die Forschung mit embryonalen Stammzellen und wie wird diese Forschung ethisch bewertet? (ca. 4 Ustd.)
Karyogramm:	erläutern Ursachen und	Nach welchem Mechanismus

36 QUA-LiS.NRW

	Konkretisierte Kompetenzerwartungen	
 Inhaltliche Aspekte 	Schülerinnen und Schüler	Sequenzierung: Leitfragen
Genommutationen, Chromosomenmutationen	Auswirkungen von Chromosomen- und Genommutationen (S1, S4, S6, E3, E11, K8, K14).	erfolgt die Keimzellbildung und welche Mutationen können dabei auftreten?
		(ca. 6 Ustd.)
MeioseRekombination		
Analyse von Familienstammbäu men	wenden Gesetzmäßigkeiten der Vererbung auf Basis der Meiose bei der Analyse von Familienstammbäumen an (S6, E1–3, E11, K9, K13). Fig. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12	Inwiefern lassen sich Aussagen zur Vererbung genetischer Erkrankungen aus Familienstammbäumen ableiten? (ca. 4 Ustd.)

UV Z4: Energie, Stoffwechsel und Enzyme

Inhaltsfeld 1: Zellbiologie

Zeitbedarf: ca. 24 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Physiologie der Zelle, Fachliche Verfahren: Untersuchung von Enzymaktivitäten

Schwerpunkte der Kompetenzbereiche:

• Erkenntnisprozesse und Ergebnisse interpretieren und reflektieren (E)

• Informationen aufbereiten (K)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Anabolismus und Katabolismus Energieumwandlun g: ATP-ADP- System,	beschreiben die Bedeutung des ATP-ADP-Systems bei auf- und abbauenden Stoffwechselprozessen (S5, S6).	Welcher Zusammenhang besteht zwischen aufbauendem und abbauendem Stoffwechsel in einer Zelle stofflich und energetisch? (ca. 12 Ustd.)
Energieumwandlun g: Redoxreaktionen		
• Enzyme: Kinetik	erklären die Regulation der Enzymaktivität mithilfe von Modellen (E5, E12, K8, K9).	Wie können in der Zelle biochemische Reaktionen reguliert ablaufen? (ca. 12 Ustd.)
Untersuchung von Enzymaktivitäten	entwickeln Hypothesen zur Abhängigkeit der Enzymaktivität von verschiedenen Faktoren und überprüfen diese mit experimentellen Daten (E2, E3, E6, E9, E11, E14).	
	beschreiben und interpretieren Diagramme zu enzymatischen	

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
• Enzyme: Regulation	Reaktionen (E9, K6, K8, K11). • erklären die Regulation der Enzymaktivität mithilfe von Modellen (E5, E12, K8, K9).	

QUALIFIKATIONSPHASE: GRUNDKURS

UV GK-N1: Informationsübertragung durch Nervenzellen

Inhaltsfeld 2: Neurobiologie

Zeitbedarf: ca. 20 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Grundlagen der Informationsverarbeitung, Fachliche Verfahren: Potenzialmessungen

Schwerpunkte der Kompetenzbereiche:

Zusammenhänge in lebenden Systemen betrachten (S)

Erkenntnisprozesse und Ergebnisse interpretieren und reflektieren (E)

Kriteriengeleitet Meinungen bilden und Entscheidungen treffen (B)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Bau und Funktionen von Nerven-zellen: Ruhepotenzial	erläutern am Beispiel von Neuronen den Zusammenhang zwischen Struktur und Funktion (S3, E12).	Wie ermöglicht die Struktur eines Neurons die Aufnahme und Weitergabe von Informationen?
		(ca. 12 Ustd.)
	entwickeln theoriegeleitet Hypothesen zur Aufrechterhaltung und Beeinflussung des Ruhepotenzials (S4, E3).	
 Bau und Funktionen von Nerven-zellen: Aktionspotenzial Potenzialmessung en 	 erklären Messwerte von Potenzialänderungen an Axon und Synapse mithilfe der zugrundeliegenden molekularen Vorgänge (S3, E14). 	

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Bau und Funktionen von Nervenzellen: Erregungsleitung	vergleichen kriteriengeleitet kontinuierliche und saltatorische Erregungsleitung und wenden die ermittelten Unterschiede auf neurobiologische Fragestellungen an (S6, E1–3).	
Synapse: Funktion der erregenden chemischen Synapse,	 erklären die Erregungsübertragung an einer Synapse und erläutern die Auswirkungen exogener Substanzen (S1, S6, E12, K9, B1, B6). 	Wie erfolgt die Informationsweitergabe zur nachgeschalteten Zelle und wie kann diese beeinflusst werden?
neuromuskuläre Synapse	erklären Messwerte von Potenzialänderungen an Axon und Synapse mithilfe der zugrundeliegenden molekularen Vorgänge (S3, E14).	(ca. 8 Ustd.)
Stoffeinwirkung an Synapsen	nehmen zum Einsatz von exogenen Substanzen zur Schmerzlinderung Stellung (B5–9).	

UV GK-S1: Energieumwandlung in lebenden Systemen

Inhaltsfeld 3: Stoffwechselphysiologie

Zeitbedarf: ca. 5 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Grundlegende Zusammenhänge von Stoffwechselwegen

Schwerpunkte der Kompetenzbereiche:

• Zusammenhänge in lebenden Systemen betrachten (S)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Energieumwandlun g Energieentwertung	stellen die wesentlichen Schritte des abbauenden Glucosestoffwechsels unter aeroben Bedingungen dar und	Wie wandeln Organismen Energie aus der Umgebung in nutzbare Energie um?
Zusammenhang von aufbauendem und abbauendem Stoffwechsel	erläutern diese hinsichtlich der Stoff- und Energieum wandlung (S1, S7, K9).	(ca. 5 Ustd)
ATP-ADP-System		
Stofftransport zwischen den Kompartimenten		
Chemiosmotische ATP-Bildung		

UV GK-S2: Glucosestoffwechsel - Energiebereitstellung aus Nährstoffen

Inhaltsfeld 3: Stoffwechselphysiologie

Zeitbedarf: ca. 11 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Grundlegende Zusammenhänge von Stoffwechselwegen

- Zusammenhänge in lebenden Systemen betrachten (S)
- Informationen erschließen (K)
- Kriteriengeleitet Meinungen bilden und Entscheidungen treffen (B)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Feinbau Mitochondrium Stoff- und Energiebilanz von Glykolyse, oxidative Decarboxylierung, Tricarbonsäure- zyklus und Atmungskette Redoxreaktionen	stellen die wesentlichen Schritte des abbauenden Glucosestoffwechsels unter aeroben Bedingungen dar und erläutern diese hinsichtlich der Stoff- und Energieum wandlung (S1, S7, K9).	Wie kann die Zelle durch den schrittweisen Abbau von Glucose nutzbare Energie bereitstellen? (ca. 6 Ustd.)
Stoffwechselregulation auf Enzymebene	 erklären die regulatorische Wirkung von Enzymen in mehrstufigen Reaktionswegen des Stoffwechsels (S7, E1–4, E11, E12). nehmen zum Konsum eines ausgewählten Nahrungsergänzungsmittels unter stoffwechselphysiologischen Aspekten Stellung (S6, K1–4, B5, B7, B9). 	Wie beeinflussen Nahrungsergänzungsmittel als Cofaktoren den Energiestoffwechsel? (ca. 5 Ustd.)

UV GK-S3: Fotosynthese - Umwandlung von Lichtenergie in nutzbare Energie

Inhaltsfeld 3: Stoffwechselphysiologie

Zeitbedarf: ca. 18 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Grundlegende Zusammenhänge bei Stoffwechselwegen, Aufbauender Stoffwechsel, Fachliche Verfahren: Chromatografie

Schwerpunkte der Kompetenzbereiche:

- Biologische Sachverhalte betrachten (S)
- Fachspezifische Modelle und Verfahren charakterisieren, auswählen und zur Untersuchung von Sachverhalten nutzen (E)
- Informationen aufbereiten (K)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Abhängigkeit der Fotosyntheserate von abiotischen Faktoren	analysieren anhand von Daten die Beeinflussung der Fotosyntheserate durch abiotische Faktoren (E4–11).	Von welchen abiotischen Faktoren ist die autotrophe Lebensweise von Pflanzen abhängig?
Funktionale Angepasstheiten: Blattaufbau	 erklären funktionale Angepasstheiten an die fotoautotrophe Lebensweise auf verschiedenen Systemebenen (S4–S6, E3, K6–8). 	(ca. 4 Ustd.) Welche Blattstrukturen sind für die Fotosynthese von Bedeutung? (ca. 4 Ustd.)
Funktionale Angepasstheiten: Absorptionsspektru m von Chlorophyll, Wirkungsspektrum, Feinbau Chloroplast	 erklären das Wirkungsspektrum der Fotosynthese mit den durch Chromatografie identifizierten Pigmenten (S3, E1, E4, E8, E13). 	Welche Funktionen hab en Fotosynthesepigmente? (ca. 3 Ustd.)

	Kankustis is ata Kananatanan musutus san	
	Konkretisierte Kompetenzerwartungen	
 Inhaltliche Aspekte 	Schülerinnen und Schüler	Sequenzierung: Leitfragen
Chromatografie		
Chemiosmotische ATP-Bildung	erläutern den Zusammenhang zwischen Primär- und	Wie erfolgt die Umwandlung von Lichtenergie in chemische
Zusammenhang von Primär- und Sekundärreaktione n,	Sekundärreaktionen der Fotosynthese aus stofflicher und energetischer Sicht (S2, S7, E2, K9).	Energie? (ca. 7 Ustd.)
Calvin-Zyklus: Fixierung, Reduktion, Regeneration		
Zusammenhang von aufbauendem und abbauendem Stoffwechsel		

UV GK-Ö1: Angepasstheiten von Lebewesen an Umweltbedingungen

Inhaltsfeld 4: Ökologie

Zeitbedarf: ca. 16 Unterrichtstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Strukturen und Zusammenhänge in Ökosystemen, Fachliche Verfahren: Erfassung ökologischer Faktoren und qualitative Erfassung von Arten in einem Areal

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Fragestellungen und Hypothesen auf Basis von Beobachtungen und Theorien entwickeln (E)
- Fachspezifische Modelle und Verfahren charakterisieren, aus wählen und zur Untersuchung von Sachverhalten nutzen (E)
- Informationen aufbereiten (K)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Biotop und Biozönose: biotische und abiotische Faktoren.	erläutern das Zusammenwirken von abiotischen und biotischen Faktoren in einem Ökosystem (S5–7, K8).	Welche Forschungsgebiete und zentrale Fragestellungen bearbeitet die Ökologie? (ca. 3 Ustd.)
 Einfluss ökologischer Faktoren auf Organismen: Toleranzkurven 	untersuchen auf der Grundlage von Daten die physiologische und ökologische Potenzvon Lebewesen (S7, E1–3, E9, E13).	Inwiefern bedingen abiotische Faktoren die Verbreitung von Lebewesen? (ca. 5 Ustd.)
 Intra- und interspezifische Beziehungen: Konkurrenz 	analysieren die Wechselwirkungen zwischen Lebewesen hinsichtlich intra- und interspezifischer Beziehungen (S4, S7, E9, K6–K8).	Welche Auswirkungen hat die Konkurrenz um Ressourcen an realen Standorten auf die Verbreitung von Arten?
• Einfluss ökologischer	erläutern die ökologische Nische als	(ca. 5 Ustd.)

	Konkretisierte Kompetenzerwartungen	
Inhaltliche Aspekte	Schülerinnen und Schüler	Sequenzierung: Leitfragen
Faktoren auf Organismen: ökologische Potenz Ökologische Nische	Wirkungsgefüge (S4, S7, E17, K7, K8).	
 Ökosystemmanage ment: Ursache- Wirkungszusamme nhänge, Erhaltungs- und Renaturierungsmaß nahmen, Erfassung ökologischer Faktoren und qualitative Erfassung von Arten in einem Areal 	 bestimmen Arten in einem ausgewählten Areal und begründen ihr Vorkommen mit dort erfassten ökologischen Faktoren (E3, E4, E7–9, E15, K8). analysieren die Folgen anthropogener Einwirkung auf ein ausgewähltes Ökosystem und begründen Erhaltungs- oder Renaturierungsmaßnahmen (S7, S8, K11–14). 	Wie können Zeigerarten für das Ökosystemmanagement genutzt werden? (ca. 3 Ustd.)

UV GK-Ö2: Wechselwirkungen und Dynamik in Lebensgemeinschaften

Inhaltsfeld 4: Ökologie

Zeitbedarf: ca. 9 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Strukturen und Zusammenhänge in Ökosystemen, Einfluss des Menschen auf Ökosysteme, Nachhaltigkeit, Biodiversität

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Informationen aufbereiten (K)
- Informationen austauschen und wissenschaftlich diskutieren (K)
- Sachverhalte und Informationen multiperspektivisch beurteilen (B)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Interspezifische Beziehungen: Parasitismus, Symbiose, Räuber- Beute-Beziehungen	analysieren Wechselwirkungen zwischen Lebewesen hinsichtlich intra- oder interspezifischer Beziehungen (S4, S7, E9, K6–K8).	In welcher Hinsicht stellen Organismen selbst einen Umweltfaktor dar? (ca. 5 Ustd.)
Ökosystemmanage ment: nachhaltige Nutzung, Bedeutung und Erhalt der Biodiversität	erläutern Konflikte zwischen Biodiversitätsschutzund Umweltnutzung und bewerten Handlungsoptionen unter den Aspekten der Nachhaltigkeit (S8, K12, K14, B2, B5, B10).	Wie können Aspekte der Nachhaltigkeit im Ökosystemmanagement verankert werden? (ca. 4 Ustd.)

UV GK-Ö3: Stoff- und Energiefluss durch Ökosysteme und der Einfluss des Menschen

Inhaltsfeld 4: Ökologie

Zeitbedarf: ca. 9 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Strukturen und Zusammenhänge in Ökosystemen, Einfluss des Menschen auf Ökosysteme, Nachhaltigkeit, Biodiversität

- Merkmale wissenschaftlicher Aussagen und Methoden charakterisieren und reflektieren (E)
- Informationen austauschen und wissenschaftlich diskutieren (K)
- Kriteriengeleitet Meinungen bilden und Entscheidungen treffen (B)
- Entscheidungsprozesse und Folgen reflektieren (B)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Stoffkreislauf und Energiefluss in einem Ökosystem: Nahrungsnetz	analysieren die Zusammenhänge von Nahrungsbeziehungen, Stoffkreisläufen und Energiefluss in einem Ökosystem (S7, E12, E14, K2, K5).	In welcher Weise stehen Lebensgemeinschaften durch Energie-fluss und Stoffkreisläufe mit der abiotischen Umwelt ihres Ökosystems in Verbindung? (ca. 4 Ustd.)
 Stoffkreislauf und Energiefluss in einem Ökosystem: Kohlenstoffkreislauf 		Welche Aspekte des Kohlenstoffkreislaufs sind für das Verständnis des Klimawandels relevant? (ca. 2 Ustd.)
Folgen des anthropogen bedingten Treibhauseffekts	erläutern geografische, zeitliche und soziale Auswirkungen des anthropogen bedingten Treibhauseffektes und entwickeln Kriterien für die Bewertung von Maßnahmen (S3, E16, K14, B4, B7, B10, B12).	Welchen Einfluss hat der Mensch auf den Treibhauseffekt und mit welchen Maßnahmen kann der Klimawandel ab gemildert werden? (ca. 3 Ustd.)

UV GK-G1: DNA - Speicherung und Expression genetischer Information

Inhaltsfeld 5: Genetik und Evolution

Zeitbedarf: ca. 27 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Molekulargenetische Grundlagen des Lebens

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Erkenntnisprozesse und Ergebnisse interpretieren und reflektieren (E)
- Informationen aufbereiten (K)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Speicherung und Realisierung genetischer Information: Bau der DNA, semikonservative Replikation, Transkription, Translation	 leiten ausgehend vom Bau der DNA das Grundprinzip der semikonservativen Replikation aus experimentellen Befunden ab (S1, E1, E9, E11, K10). erläutern vergleichend die Realisierung der genetischen Information bei Prokaryoten und Eukaryoten (S2, S5, E12, K5, K6). 	Wie wird die identische Verdopplung der DNA vor einer Zellteilung gewährleistet? (ca. 4 Ustd.) Wie wird die genetische Information der DNA zu Genprodukten bei Prokaryoten umgesetzt? (ca. 6 Ustd.) Welche Gemeinsamkeiten und Unterschiede bestehen bei der Proteinbiosynthese von Pro- und Eukaryoten? (ca. 5 Ustd.)
Zusammenhänge zwischen genetischem Material,	erklären die Auswirkungen von Genmutationen auf Genprodukte und Phänotyp (S4, S6, S7, E1, K8).	Wie können sich Veränderungen der DNA auf die Genprodukte und den Phänotyp auswirken?

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung:Leitfragen
Genprodukten und Merkmal: Genmutationen		(ca. 5 Ustd.)
Regulation der Genaktivität bei Eukaryoten: Transkriptionsfakto ren, Modifikationen des Epigenoms durch DNA- Methylierung	erklären die Regulation der Genaktivität bei Eukaryoten durch den Einfluss von Transkriptionsfaktoren und DNA- Methylierung (S2, S6, E9, K2, K11).	Wie wird die Genaktivität bei Eukaryoten gesteuert? (ca. 7 Ustd.)

UV GK-G2: Humangenetik und Gentherapie

Inhaltsfeld 5: Genetik und Evolution

Zeitbedarf: ca. 8 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Molekulargenetische Grundlagen des Lebens

Schwerpunkte der Kompetenzbereiche:

• Zusammenhänge in lebenden Systemen betrachten (S)

• Kriteriengeleitet Meinungen bilden und Entscheidungen treffen (B)

• Entscheidungsprozesse und Folgen reflektieren (B)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Genetik menschlicher Erkrankungen: Familienstammbäu me, Gentest und Beratung, Gentherapie	 analysieren Familienstammbäume und leiten daraus mögliche Konsequenzen für Gentest und Beratung ab (S4, E3, E11, E15, K14, B8). bewerten Nutzen und Risiken einer Gentherapie beim Menschen (S1, K14, B3, B7–9, B11). 	Welche Bedeutung haben Familienstammbäume für die genetische Beratung betroffener Familien? (ca. 4 Ustd.) Welche ethischen Konflikte treten im Zusammenhang mit gentherapeutischen Behandlungen beim Menschen auf? (ca. 4 Ustd.)

UV GK-E1: Evolutionsfaktoren und Synthetische Evolutionstheorie

Inhaltsfeld 5: Genetik und Evolution

Zeitbedarf: ca. 13 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Entstehung und Entwicklung des Lebens

- Biologische Sachverhalte betrachten (S)
- Zusammenhänge in lebenden Systemen betrachten (S)
- Informationen aufbereiten (K)

	Konkretisierte Kompetenzerwartungen	
Inhaltliche Aspekte	Schülerinnen und Schüler	Sequenzierung: Leitfragen
Synthetische Evolutionstheorie: Mutation, Rekombination, Selektion, Variation, Gendrift	begründen die Veränderungen im Genpool einer Population mit der Wirkung der Evolutionsfaktoren (S2, S5, S6, K7).	Wie lassen sich Veränderungen im Genpool von Populationen erklären? (ca. 5 Ustd.)
Synthetische Evolutionstheorie: adaptiver Wert von Verhalten, Kosten- Nutzen-Analyse, reproduktive Fitness	erläutern die Angepasstheit von Lebewesen auf Basis der reproduktiven Fitness auch unter dem Aspekt einer Kosten-Nutzen- Analyse (S3, S5–7, K7, K8).	Welche Bedeutung hat die reproduktive Fitness für die Entwicklung von Angepasstheiten? (ca. 2 Ustd.) Wie kann die Entwicklung von angepassten Verhaltensweisen erklärt werden? (ca. 2 Ustd.) Wie lässt sich die Entstehung von Sexualdimorphismus erklären? (ca. 2 Ustd.)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Synthetische Evolutionstheorie: Koevolution	erläutern die Angepasstheit von Lebewesen auf Basis der reproduktiven Fitness auch unter dem Aspekt einer Kosten-Nutzen- Analyse (S3, S5–7, K7, K8).	Welche Prozesse laufen bei der Koevolution ab? (ca. 2 Ustd.)

UV GK-E2: Stammbäume und Verwandtschaft

Inhaltsfeld 5: Genetik und Evolution

Zeitbedarf: ca. 16 Unterrichts stunden à 45 Minuten

Inhaltliche Schwerpunkte:

Entstehung und Entwicklung des Lebens

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Fragestellungen und Hypothesen auf Basis von Beobachtungen und Theorien entwickeln (E)
- Merkmale wissenschaftlicher Aussagen und Methoden charakterisieren und reflektieren (E)
- Informationen aufbereiten (K)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Stammbäume und Verwandtschaft: Artbildung, Biodiversität, populationsgenetis cher Artbegriff, Isolation	erklären Prozesse des Artwandels und der Artbildung mithilfe der Synthetischen Evolutionstheorie (S4, S6, S7, E12, K6, K7).	Wie kann es zur Entstehung unterschiedlicher Arten kommen? (ca. 4 Ustd.)

	Kankratia jarta Kampatanzarus stus sas	
	Konkretisierte Kompetenzerwartungen	
 Inhaltliche Aspekte 	Schülerinnen und Schüler	Sequenzierung: Leitfragen
molekularbiologisc he Homologien, ursprüngliche und abgeleitete Merkmale	deuten molekularbiologische Homologien im Hinblick auf phylogenetische Verwandtschaft und vergleichen diese mit konvergenten Entwicklungen (S1, S3, E1, E9, E12, K8).	Welche molekularen Merkmale deuten auf eine phylogenetische Verwandtschaft hin? (ca. 3 Ustd.)
	analysieren phylogenetische Stammbäume im Hinblick auf die Verwandtschaft von Lebewesen und die Evolution von Genen (S4, E2, E10, E12, K9, K11).	Wie lässt sich die phylogenetische Verwandtschaft auf verschiedenen Ebenen ermitteln, darstellen und analysieren? (ca. 4 Ustd.)
	deuten molekularbiologische Homologien im Hinblick auf phylogenetische Verwandtschaft und vergleichen diese mit konvergenten Entwicklungen (S1, S3, E1, E9, E12, K8).	Wie lassen sich konvergente Entwicklungen erkennen? (ca. 3 Ustd.)
Synthetische Evolutionstheorie: Abgrenzung von nicht- naturwissenschaftli chen Vorstellungen	begründen die Abgrenzung der Synthetischen Evolutionstheorie gegen nicht-naturwissenschaftliche Positionen und nehmen zu diesen Stellung (E15–E17, K4, K13, B1, B2, B5).	Wie lässt sich die Synthetische Evolutionstheorie von nicht- naturwissenschaftlichen Vorstellungen ab grenzen? (ca. 2 Ustd.)

QUALIFIKATIONSPHASE: LEISTUNGSKURS

UV LK-N1: Erregungsentstehung und Erregungsleitung an einem Neuron

Inhaltsfeld 2: Neurobiologie

Zeitbedarf: ca. 18 Unterrichtstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Grundlagen der Informations verarbeitung,

Fachliche Verfahren: Potenzialmessungen, neurophysiologische Verfahren

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Erkenntnisprozesse und Ergebnisse interpretieren und reflektieren (E)
- Sachverhalte und Informationen multiperspektivisch beurteilen (B)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung:Leitfragen
Bau und Funktionen von Nerven-zellen: Ruhepotenzial	erläutern am Beispiel von Neuronen den Zusammenhang zwischen Struktur und Funktion (S3, E12).	Wie ermöglicht die Struktur eines Neurons die Aufnahme und Weitergabe von Informationen? (ca. 12 Ustd.)
	entwickeln theoriegeleitet Hypothesen zur Aufrechterhaltung und Beeinflussung des Ruhepotenzials (S4, E3).	
 Bau und Funktionen von Nerven-zellen: Aktionspotenzial neurophysiologisch e Verfahren, Potenzialmessung en 	erklären Messwerte von Potenzialänderungen an Axon und Synapse mithilfe der zugrundeliegenden molekularen Vorgänge und stellen die Anwendung eines zugehörigen neurophysiologischen Verfahrens dar (S3, E14).	

	Konkretisierte Kompetenzerwartungen	
 Inhaltliche Aspekte 	Schülerinnen und Schüler	Sequenzierung: Leitfragen
Bau und Funktionen von Nerven-zellen: Erregungsleitung	vergleichen kriteriengeleitet kontinuierliche und saltatorische Erregungsleitung und wenden die ermittelten Unterschiede auf neurobiologische Fragestellungen an (S6, E1–3).	
Störungen des neuronalen Systems	analysieren die Folgen einer neuronalen Störung aus individueller und gesellschaftlicher Perspektive (S3, K1–4, B2, B6).	Wie kann eine Störung des neuronalen Systems die Informationsweitergabe beeinflussen? (ca. 2 Ustd.)
Bau und Funktionen von Nerven-zellen: primäre und sekundäre Sinneszelle, Rezeptorpotenzial	erläutern das Prinzip der Signaltrans duktion bei primären und sekundären Sinneszellen (S2, K6, K10).	Wie werden Reize aufgenommen und zu Signalen umgewandelt? (ca. 4 Ustd.)

57

UV LK-N2: Informationsweitergabe über Zellgrenzen

Inhaltsfeld 2: Neurobiologie

Zeitbedarf: ca. 14 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Grundlagen der Informations verarbeitung, Neuronale Plastizität

Schwerpunkte der Kompetenzbereiche:

• Zusammenhänge in lebenden Systemen betrachten (S)

• Informationen aufbereiten (K)

• Kriteriengeleitet Meinungen bilden und Entscheidungen treffen (B)

	Konkretisierte Kompetenzerwartungen	
Inhaltliche Aspekte	Schülerinnen und Schüler	Sequenzierung: Leitfragen
Synapse: Funktion der erregenden chemischen Synapse, neuromuskuläre Synapse	erklären die Erregungsübertragung an einer Synapse und erläutern die Auswirkungen exogener Substanzen (S1, S6, E12, K9, B1, B6).	Wie erfolgt die Erregungsleitung vom Neuron zur nachgeschalteten Zelle und wie kann diese beeinflusst werden? (ca. 8 Ustd.)
Verrechnung: Funktion einer hemmenden Synapse, räumliche und zeitliche Summation	erklären Messwerte von Potenzialänderungen an Axon und Synapse mithilfe der zugrundeliegenden molekularen Vorgänge und stellen die Anwendung eines zugehörigen neurophysiologischen Verfahrens dar (S3, E14).	
	erläutern die Bedeutung der Verrechnung von Potenzialen für die Erregungsleitung (S2, K11).	
Stoffeinwirkung an Synapsen	nehmen zum Einsatz von exogenen Substanzen zur Schmerzlinderung Stellung (B5–9).	
Zelluläre Prozesse	erläutern die synaptische Plastizität	Wie kann Lernen auf neuronaler

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
des Lernens	auf der zellulären Ebene und leiten ihre Bedeutung für den Prozess des Lernens ab (S2, S6, E12, K1).	Ebene erklärt werden? (ca. 4 Ustd.)
Hormone: Hormonwirkung, Verschränkung hormoneller und neuronaler Steuerung	beschreiben die Verschränkung von hormoneller und neuronaler Steuerung am Beispiel der Stressreaktion (S2, S6).	Wie wirken neuronales System und Hormonsystem bei der Stressreaktion zusammen? (ca. 2 Ustd.)

UV LK-S1: Energieumwandlung in lebenden Systemen

Inhaltsfeld 3: Stoffwechselphysiologie

Zeitbedarf: ca. 6 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Grundlegende Zusammenhänge von Stoffwechselwegen

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Erkenntnisprozesse und Ergebnisse interpretieren und reflektieren (E)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Energieumwandlun gEnergieentwertung	vergleichen den membranbasierten Mechanismus der Energieumwandlung in	Wie wandeln Organismen Energie aus der Umgebung in nutzbare Energie um?
Zusammenhang von aufbauendem und abbauendem Stoffwechsel	Mitochondrien und Chloroplasten auch auf Basis von energetischen Modellen (S4, S7, E12, K9, K11).	(ca. 6 Ustd)
ATP-ADP-System		
Stofftransport zwischen den Kompartimenten		
Chemiosmotische ATP-Bildung		

UV LK-S2: Glucosestoffwechsel – Energiebereitstellung aus Nährstoffen

Inhaltsfeld 3: Stoffwechselphysiologie

Zeitbedarf: ca. 16 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Grundlegende Zusammenhänge von Stoffwechselwegen

- Zusammenhänge in lebenden Systemen betrachten (S)
- Erkenntnisprozesse und Ergebnisse interpretieren und reflektieren (E)
- Informationen erschließen (K)
- Kriteriengeleitet Meinungen bilden und Entscheidungen treffen (B)

	Konkretisierte Kompetenzerwartungen	
Inhaltliche Aspekte	Schülerinnen und Schüler	Sequenzierung: Leitfragen
Feinbau Mitochondrium Stoff- und Energiebilanzvon Glykolyse, oxidative Decarboxylierung,	 stellen die wesentlichen Schritte des abbauenden Glucosestoffwechsels unter aeroben und anaeroben Bedingungen dar und erläutern diese hinsichtlich der Stoff- und Energieumwandlung (S1, S7, K9). vergleichen den membranbasierten 	Wie kann die Zelle durch den schrittweisen Abbau von Glucose nutzbare Energie bereitstellen? (ca. 8 Ustd.)
Tricarbonsäure- zyklus und Atmungskette • Energetisches Modell der Atmungskette • Redoxreaktionen	Mechanismus der Energieumwandlung in Mitochondrien und Chloroplasten auch auf Basis von energetischen Modellen (S4, S7, E12, K9, K11).	
Alkoholische Gärung und Milchsäuregärung	stellen die wesentlichen Schritte des abbauenden Glucosestoffwechsels unter aeroben und anaeroben Bedingungen dar und erläutern diese hinsichtlich der Stoff- und	Welche Bedeutung haben Gärungsprozesse für die Energiegewinnung? (ca. 2 Ustd.)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Stoffwechselregula tion auf Enzymebene	 Energieumwandlung (S1, S7, K9). erklären die regulatorische Wirkung von Enzymen in mehrstufigen Reaktionswegen des Stoffwechsels (S7, E1–4, E11, E12). nehmen zum Konsum eines ausgewählten Nahrungsergänzungsmittels unter stoffwechselphysiologischen Aspekten Stellung (S6, K1–4, B5, B7, B9). 	Wie beeinflussen Nahrungs- ergänzungsmittel als Cofaktoren den Energiestoffwechsel? (ca. 6 Ustd.)

UV LK-S3: Fotosynthese - Umwandlung von Lichtenergie in nutzbare Energie

Inhaltsfeld 3: Stoffwechselphysiologie

Zeitbedarf: ca. 24 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Grundlegende Zusammenhänge bei Stoffwechselwegen, Aufbauender Stoffwechsel, Fachliche Verfahren: Chromatografie, Tracer-Methode

- Biologische Sachverhalte betrachten (S)
- Fragestellungen und Hypothesen auf Basis von Beobachtungen und Theorien entwickeln (E)
- Fachspezifische Modelle und Verfahren charakterisieren, auswählen und zur Untersuchung von Sachverhalten nutzen (E)
- Informationen aufbereiten (K)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Abhängigkeit der Fotosyntheserate von abiotischen Faktoren	 analysieren anhand von Daten die Beeinflussung der Fotosyntheserate durch abiotische Faktoren (E4–11). 	Von welchen ab iotischen Faktoren ist die autotrophe Lebensweise von Pflanzen ab hängig? (ca. 4 Ustd.)
Funktionale Angepasstheiten: Blattaufbau	 erklären funktionale Angepasstheiten an die fotoautotrophe Lebensweise auf verschiedenen Systemebenen (S4–S6, E3, K6–8). 	Welche Blattstrukturen sind für die Fotosynthese von Bedeutung? (ca. 4 Ustd.)
 Funktionale Angepasstheiten: Absorptionsspektru m von Chlorophyll, Wirkungsspektrum, Lichtsammelkomplex, Feinbau Chloroplast Chromatografie 	erklären das Wirkungsspektrum der Fotosynthese mit den durch Chromatografie identifizierten Pigmenten (S3, E1, E4, E8, E13).	Welche Funktionen hab en Fotosynthesepigmente? (ca. 4 Ustd.)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Chemiosmotische ATP-Bildung Energetisches Modell der Lichtreaktionen Zusammenhang von Primär- und Sekundärreaktione n, Calvin-Zyklus: Fixierung, Reduktion, Regeneration Tracer-Methode Zusammenhang von aufbauendem und abbauendem Stoffwechsel	 vergleichen den membranbasierten Mechanismus der Energieumwandlung in Mitochondrien und Chloroplasten auch auf Basis von energetischen Modellen (S4, S7, E12, K9, K11). erläutern den Zusammenhang zwischen Primär- und Sekundärreaktionen der Fotosynthese aus stofflicher und energetischer Sicht (S2, S7, E2, K9). werten durch die Anwendung von Tracermethoden erhaltene Befunde zum Ablauf mehrstufiger Reaktionswege aus (S2, E9, E10, E15). 	Wie erfolgt die Umwandlung von Lichtenergie in chemische Energie? (ca. 12 Ustd.)

UV LK-S4: Fotosynthese - natürliche und anthropogene Prozessoptimierung

Inhaltsfeld 3: Stoffwechselphysiologie

Zeitbedarf: ca. 8 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Grundlegende Zusammenhänge bei Stoffwechselwegen, Aufbauender Stoffwechsel

- Zusammenhänge in lebenden Systemen betrachten (S)
- Merkmale wissenschaftlicher Aussagen und Methoden charakterisieren und reflektieren (E)
- Entscheidungsprozesse und Folgen reflektieren (B)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung:Leitfragen
 Funktionale Angepasstheiten: Blattaufbau C₄-Pflanzen Stofftransport zwischen Kompartimenten 	• vergleichen die Sekundärvorgänge bei C ₃ - und C ₄ - Pflanzen und erklären diese mit der Angepasstheit an unterschiedliche Standortfaktoren (S1, S5, S7, K7).	Welche morphologischen und physiologischen Angepasstheiten ermöglichen eine effektive Fotosynthese an heißen und trockenen Standorten? (ca. 4 Ustd.)
 Zusammenhang von Primär- und Sekundärreaktionen 	multiperspektivisch Zielsetzungen	Inwiefern können die Erkenntnisse aus der Fotosyntheseforschung zur Lösung der weltweiten CO2- Problematik beitragen? (ca. 4 Ustd.)

UV LK-Ö1: Angepasstheiten von Lebewesen an Umweltbedingungen

Inhaltsfeld 4: Ökologie

Zeitbedarf: ca. 22 Unterrichtstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Strukturen und Zusammenhänge in Ökosystemen, Fachliche Verfahren: Erfassung ökologischer Faktoren und quantitative und qualitative Erfassung von Arten in einem Areal

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Fragestellungen und Hypothesen auf Basis von Beobachtungen und Theorien entwickeln (E)
- Fachspezifische Modelle und Verfahren charakterisieren, aus wählen und zur Untersuchung von Sachverhalten nutzen (E)
- Informationen aufbereiten (K)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Biotop und Biozönose: biotische und abiotische Faktoren.	erläutern das Zusammenwirken von abiotischen und biotischen Faktoren in einem Ökosystem (S5–7, K8).	Welche Forschungsgebiete und zentrale Fragestellungen bearbeitet die Ökologie? (ca. 3 Ustd.)
Einfluss ökologischer	untersuchen auf der Grundlage von	Inwiefern bedingen abiotische
Faktoren auf	Daten die physiologische und	Faktoren die Verbreitung von
Organismen:	ökologische Potenz von Lebewesen	Lebewesen?
Toleranzkurven	(S7, E1–3, E9, E13).	(ca. 8 Ustd.)
Intra- und	analysieren die Wechselwirkungen	Welche Auswirkungen hat die
interspezifische	zwischen Lebewesen hinsichtlich	Konkurrenz um Ressourcen an
Beziehungen:	intra- und interspezifischer	realen Standorten auf die
Konkurrenz,	Beziehungen (S4, S7, E9, K6–K8).	Verbreitung von Arten?

	Konkretisierte Kompetenzerwartungen	
Inhaltliche Aspekte	Schülerinnen und Schüler	Sequenzierung: Leitfragen
 Einfluss ökologischer Faktoren auf Organismen: ökologische Potenz Ökologische Nische 	erläutern die ökologische Nische als Wirkungsgefüge (S4, S7, E17, K7, K8).	(ca. 7 Ustd.)
 Ökosystemmanage ment: Ursache- Wirkungszusamme nhänge, Erhaltungs- und Renaturierungsmaß nahmen, Erfassung ökologischer Faktoren und quantitative und qualitative Erfassung von Arten in einem Areal 	 bestimmen Arten in einem ausgewählten Areal und begründen ihr Vorkommen mit dort erfassten ökologischen Faktoren (E3, E4, E7– 9, E15, K8). analysieren die Folgen anthropogener Einwirkung auf ein ausgewähltes Ökosystem und begründen Erhaltungs- oder Renaturierungsmaßnahmen (S7, S8, K11–14). 	Wie können Zeigerarten für das Ökosystemmanagement genutzt werden? (ca. 4 Ustd.)

UV LK-Ö2: Wechselwirkungen und Dynamik in Lebensgemeinschaften

Inhaltsfeld 4: Ökologie

Zeitbedarf: ca. 18 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Strukturen und Zusammenhänge in Ökosystemen, Einfluss des Menschen auf Ökosysteme, Nachhaltigkeit, Biodiversität

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Erkenntnisprozesse und Ergebnisse interpretieren und reflektieren (E)
- Informationen austauschen und wissenschaftlich diskutieren (K)
- Sachverhalte und Informationen multiperspektivisch beurteilen (B)

	Konkretisierte Kompetenzerwartungen	
Inhaltliche Aspekte	Schülerinnen und Schüler	Sequenzierung: Leitfragen
Idealisierte Populationsentwickl ung: exponentielles und logistisches Wachstum Fortpflanzungsstrat egien: r- und K- Strategien	interpretieren grafische Darstellungen der Populationsdynamik unter idealisierten und realen Bedingungen auch unter Berücksichtigung von Fortpflanzungsstrategien (S5, E9, E10, E12, K9).	Welche grundlegenden Annahmen gibt es in der Ökologie über die Dynamik von Populationen? (ca. 6 Ustd.)
Interspezifische Beziehungen: Parasitismus, Symbiose, Räuber- Beute-Beziehungen	analysieren Wechselwirkungen zwischen Lebewesen hinsichtlich intra- oder interspezifischer Beziehungen (S4, S7, E9, K6–K8).	In welcher Hinsicht stellen Organismen selb steinen Umweltfaktor dar? (ca. 6 Ustd.)
Ökosystemmanage ment: nachhaltige	erläutern Konflikte zwischen Biodiversitätsschutzund	Wie können Aspekte der Nachhaltigkeit im

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Nutzung, Bedeutung und Erhalt der Biodiversität	Umweltnutzung und bewerten Handlungsoptionen unter den Aspekten der Nachhaltigkeit (S8, K12, K14, B2, B5, B10).	Ökosystemmanagement verankert werden? (ca. 6 Ustd.)
Hormonartig wirkende Substanzen in der Umwelt	analysieren Schwierigkeiten der Risikobewertung für hormonartig wirkende Substanzen in der Umwelt unter Berücksichtigung verschiedener Interessenslagen (E15, K10, K14, B1, B2, B5).	

UV LK-Ö3: Stoff- und Energiefluss durch Ökosysteme und der Einfluss des Menschen

Inhaltsfeld 4: Ökologie

Zeitbedarf: ca. 18 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Strukturen und Zusammenhänge in Ökosystemen, Einfluss des Menschen auf Ökosysteme, Nachhaltigkeit, Biodiversität

- Merkmale wissenschaftlicher Aussagen und Methoden charakterisieren und reflektieren (E)
- Informationen austauschen und wissenschaftlich diskutieren (K)
- Kriteriengeleitet Meinungen bilden und Entscheidungen treffen (B)
- Entscheidungsprozesse und Folgen reflektieren (B)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Stoffkreislauf und Energiefluss in einem Ökosystem: Nahrungsnetz	analysieren die Zusammenhänge von Nahrungsbeziehungen, Stoffkreisläufen und Energiefluss in einem Ökosystem (S7, E12, E14, K2, K5).	In welcher Weise stehen Lebensgemeinschaften durch Energiefluss und Stoffkreisläufe mit der abiotischen Umwelt ihres Ökosystems in Verbindung? (ca. 5 Ustd.)
 Stoffkreislauf und Energiefluss in einem Ökosystem: Kohlenstoffkreislauf 		Welche Aspekte des Kohlenstoffkreislaufs sind für das Verständnis des Klimawandels relevant? (ca. 3 Ustd.)
 Folgen des anthropogen bedingten Treibhauseffekts Ökologischer Fußabdruck 	erläutern geografische, zeitliche und soziale Auswirkungen des anthropogen bedingten Treibhauseffektes und entwickeln Kriterien für die Bewertung von Maßnahmen (S3, E16, K14, B4, B7, B10, B12).	Welchen Einfluss hat der Mensch auf den Treibhaus- effekt und mit welchen Maßnahmen kann der Klimawandel abgemildert werden? (ca. 5 Ustd.)
	beurteilen anhand des ökologischen Fußabdrucks den Verbrauch endlicher Ressourcen aus verschiedenen Perspektiven (K13, K14, B8, B10, B12).	
Stickstoffkreislauf Ökosystemmanage ment: Ursache- Wirkungszusamme nhänge, nachhaltige Nutzung	 analysieren die Folgen anthropogener Einwirkung auf ein ausgewähltes Ökosystem und begründen Erhaltungs- oder Renaturierungsmaßnahmen (S7, S8, K11–14). analysieren die Zusammenhänge von Nahrungsbeziehungen, Stoffkreisläufen und Energiefluss in einem Ökosystem (S7, E12, E14, 	Wie können umfassende Kenntnisse über ökologische Zusammenhänge helfen, Lösungen für ein komplexes Umweltproblem zu entwickeln? (ca. 5 Ustd.)

Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
K2, K5).	

UV LK-G1: DNA - Speicherung und Expression genetischer Information

Inhaltsfeld 5: Genetik und Evolution

Zeitbedarf: ca. 28 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Molekulargenetische Grundlagen des Lebens, Fachliche Verfahren: PCR, Gelelektrophorese

- Zusammenhänge in lebenden Systemen betrachten (S)
- Erkenntnisprozesse und Ergebnisse interpretieren und reflektieren (E)
- Informationen aufbereiten (K)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Speicherung und Realisierung genetischer Information: Bau der DNA, semikonservative Replikation, Transkription, Translation	 leiten ausgehend vom Bau der DNA das Grundprinzip der semikonservativen Replikation aus experimentellen Befunden ab (S1, E1, E9, E11, K10). erläutern vergleichend die Realisierung der genetischen Information bei Prokaryoten und Eukaryoten (S2, S5, E12, K5, K6). deuten Ergebnisse von Experimenten zum Ablauf der Proteinbiosynthese (u. a. zur 	Wie wird die identische Verdopplung der DNA vor einer Zellteilung gewährleistet? (ca. 4 Ustd.) Wie wird die genetische Information der DNA zu Genprodukten bei Prokaryoten umgesetzt? (ca. 8 Ustd.)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
	Ents chlüs selung des genetischen Codes) (S4, E9, E12, K2, K9).	
	erläutern vergleichend die Realisierung der genetischen Information bei Prokaryoten und Eukaryoten (S2, S5, E12, K5, K6).	Welche Gemeinsamkeiten und Unterschiede bestehen bei der Proteinbiosynthese von Pro- und Eukaryoten?
		(ca. 5 Ustd.)
 Zusammenhänge zwischen genetischem 	erklären die Auswirkungen von Genmutationen auf Genprodukte und Phänotyp (S4, S6, S7, E1, K8).	Wie können sich Veränderungen der DNA auf die Genprodukte und den Phänotyp auswirken?
Material, Genprodukten und Merkmal: Genmutationen		(ca. 5 Ustd.)
PCRGelelektrophorese	erläutern PCR und Gelelektrophorese unter anderem als Verfahren zur Feststellung von Genmutationen (S4, S6, E8–10, K11).	Mit welchen molekularbiologischen Verfahren können zum Beispiel Genmutationen festgestellt werden? (ca. 6 Ustd.)

UV LK-G2: DNA - Regulation der Genexpression und Krebs

Inhaltsfeld 5: Genetik und Evolution

Zeitbedarf: ca. 20 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Molekulargenetische Grundlagen des Lebens

- Zusammenhänge in lebenden Systemen betrachten (S)
- Erkenntnisprozesse und Ergebnisse interpretieren und reflektieren (E)
- Informationen austauschen und wissenschaftlich diskutieren (K)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Regulation der Genaktivität bei Eukaryoten: Transkriptionsfakto ren, Modifikationen des Epigenoms durch DNA- Methylierung, Histonmodifikation, RNA-Interferenz	 erklären die Regulation der Genaktivität bei Eukaryoten durch den Einfluss von Transkriptionsfaktoren und DNA- Methylierung (S2, S6, E9, K2, K11). erläutern die Genregulation bei Eukaryoten durch RNA-Interferenz und Histon-Modifikation anhand von Modellen (S5, S6, E4, E5, K1, K10). 	Wie wird die Genaktivität bei Eukaryoten gesteuert? (ca. 10 Ustd.)
Krebs: Krebszellen, Onkogene und Anti-Onkogene, personalisierte Medizin	 begründen Eigenschaften von Krebszellen mit Veränderungen in Proto-Onkogenen und Anti- Onkogenen (Tumor-Suppressor- Genen) (S3, S5, S6, E12). begründen den Einsatzder personalisierten Medizin in der Krebstherapie (S4, S6, E14, K13). 	Wie können zelluläre Faktoren zum ungehemmten Wachstum der Krebszellen führen? (ca. 6 Ustd.) Welche Chancen bietet eine personalisierte Krebstherapie? (ca. 4 Ustd.)

UV LK-G3: Humangenetik, Gentechnik und Gentherapie

Inhaltsfeld 5: Genetik und Evolution

Zeitbedarf: ca. 18 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Molekulargenetische Grundlagen des Lebens, Fachliche Verfahren: Gentechnik: Veränderung und Einbau von DNA, Gentherapeutische Verfahren

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Kriteriengeleitet Meinungen bilden und Entscheidungen treffen (B)
- Entscheidungsprozesse und Folgen reflektieren (B)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Genetik menschlicher Erkrankungen: Familienstammbäu me, Gentest und Beratung, Gentherapie	analysieren Familienstammbäume und leiten daraus mögliche Konsequenzen für Gentest und Beratung ab (S4, E3, E11, E15, K14, B8).	Welche Bedeutung haben Familienstammbäume für die genetische Beratung betroffener Familien? (ca. 4 Ustd.)
Gentechnik: Veränderung und Einbau von DNA, Gentherapeutische Verfahren	erklären die Herstellung rekombinanter DNA und nehmen zur Nutzung gentechnisch veränderter Organismen Stellung (S1, S8, K4, K13, B2, B3, B9, B12).	Wie wird rekombinante DNA hergestellt und vermehrt? Welche ethischen Konflikte treten bei der Nutzung gentechnisch veränderter Organismen auf? (ca. 8 Ustd.)
Genetik menschlicher Erkrankungen: Familienstammbäu me, Gentest und Beratung,	bewerten Nutzen und Risiken einer Gentherapie beim Menschen und nehmen zum Einsatz gentherapeutischer Verfahren Stellung (S1, K14, B3, B7–9, B11).	Welche ethischen Konflikte treten im Zusammenhang mit gentherapeutischen Behandlungen beim Menschen auf? (ca. 6 Ustd.)

	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung:Leitfragen
Gentherapie		

UV LK-E1: Evolutionsfaktoren und Synthetische Evolutionstheorie

Inhaltsfeld 5: Genetik und Evolution

Zeitbedarf: ca. 20 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Entstehung und Entwicklung des Lebens

Schwerpunkte der Kompetenzbereiche:

- Biologische Sachverhalte betrachten (S)
- Zusammenhänge in lebenden Systemen betrachten (S)
- Informationen aufbereiten (K)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Synthetische Evolutionstheorie: Mutation, Rekombination, Selektion, Variation, Gendrift	begründen die Veränderungen im Genpool einer Population mit der Wirkung der Evolutionsfaktoren (S2, S5, S6, K7).	Wie lassen sich Veränderungen im Genpool von Populationen erklären? (ca. 6 Ustd.)
Synthetische Evolutionstheorie: adaptiver Wert von Verhalten, Kosten- Nutzen-Analyse, reproduktive Fitness	erläutern die Angepasstheit von Lebewesen auf Basis der reproduktiven Fitness auch unter dem Aspekt einer Kosten-Nutzen- Analyse (S3, S5–7, K7, K8).	Welche Bedeutung hat die reproduktive Fitness für die Entwicklung von Angepasstheiten? (ca. 2 Ustd.) Wie kann die Entwicklung von angepassten Verhaltensweisen erklärt werden? (ca. 3 Ustd.) Wie lässt sich die Entstehung von Sexualdimorphismus erklären? (ca. 3 Ustd.)

	Konkretisierte Kompetenzerwartungen	
Inhaltliche Aspekte	Schülerinnen und Schüler	Sequenzierung: Leitfragen
Sozialverhalten bei Primaten: exogene und endogene Ursachen, Fortpflanzungsverh alten	erläutern datenbasiert das Fortpflanzungsverhalten von Primaten auch unter dem Aspekt der Fitnessmaximierung (S3, S5, E3, E9, K7).	Wie lassen sich die Paarungsstrategien und Sozialsysteme bei Primaten erklären? (ca. 4 Ustd.)
Synthetische Evolutionstheorie: Koevolution	erläutern die Angepasstheit von Lebewesen auf Basis der reproduktiven Fitness auch unter dem Aspekt einer Kosten-Nutzen- Analyse (S3, S5–7, K7, K8).	Welche Prozesse laufen bei der Koevolution ab? (ca. 2 Ustd.)

UV LK-E2: Stammbäume und Verwandtschaft

Inhaltsfeld 5: Genetik und Evolution

Zeitbedarf: ca. 16 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Entstehung und Entwicklung des Lebens

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Fragestellungen und Hypothesen auf Basis von Beobachtungen und Theorien entwickeln (E)
- Merkmale wissenschaftlicher Aussagen und Methoden charakterisieren und reflektieren (E)
- Informationen aufbereiten (K)

•

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Stammbäume und Verwandtschaft: Artbildung, Biodiversität, populationsgenetis cher Artbegriff, Isolation	erklären Prozesse des Artwandels und der Artbildung mithilfe der Synthetischen Evolutionstheorie (S4, S6, S7, E12, K6, K7).	Wie kann es zur Entstehung unterschiedlicher Arten kommen? (ca. 4 Ustd.)
molekularbiologisc he Homologien, ursprüngliche und abgeleitete Merkmale	deuten molekularbiologische Homologien im Hinblick auf phylogenetische Verwandtschaft und vergleichen diese mit konvergenten Entwicklungen (S1, S3, E1, E9, E12, K8).	Welche molekularen Merkmale deuten auf eine phylogenetische Verwandtschaft hin? (ca. 3 Ustd.)
	analysieren phylogenetische Stammbäume im Hinblick auf die Verwandtschaft von Lebewesen und die Evolution von Genen (S4, E2, E10, E12, K9, K11).	Wie lässt sich die phylogenetische Verwandtschaft auf verschiedenen Ebenen ermitteln, darstellen und analysieren? (ca. 4 Ustd.)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
	deuten molekularbiologische Homologien im Hinblick auf phylogenetische Verwandtschaft und vergleichen diese mit konvergenten Entwicklungen (S1, S3, E1, E9, E12, K8).	Wie lassen sich konvergente Entwicklungen erkennen? (ca. 3 Ustd.)
Synthetische Evolutionstheorie: Abgrenzung von nicht- naturwissenschaftli chen Vorstellungen	begründen die Abgrenzung der Synthetischen Evolutionstheorie gegen nicht-naturwissenschaftliche Positionen und nehmen zu diesen Stellung (E15–E17, K4, K13, B1, B2, B5).	Wie lässt sich die Synthetische Evolutionstheorie von nicht- naturwissenschaftlichen Vorstellungen ab grenzen? (ca. 2 Ustd.)

UV LK-E3: Humanevolution und kulturelle Evolution

Inhaltsfeld 5: Genetik und Evolution

Zeitbedarf: ca.10 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Entstehung und Entwicklung des Lebens

Schwerpunkte der Kompetenzbereiche:

- Fragestellungen und Hypothesen auf Basis von Beobachtungen und Theorien entwickeln (E)
- Erkenntnisprozesse und Ergebnisse interpretieren und reflektieren (E)
- Informationen aufbereiten (K)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Evolution des Menschen und kulturelle Evolution: Ursprung, Fossilgeschichte, Stammbäume und Verbreitung des heutigen Menschen, Werkzeuggebrauc h, Sprachentwicklung	 diskutieren wissenschaftliche Befunde und Hypothesen zur Humanevolution auch unter dem Aspekt ihrer Vorläufigkeit (S4, E9, E12, E15, K7, K8). analysieren die Bedeutung der kulturellen Evolution für soziale Lebewesen (E9, E14, K7, K8, B2, B9). 	Wie kann die Evolution des Menschen anhand von morphologischen und molekularen Hinweisen nachvollzogen werden? (ca. 7 Ustd.) Welche Bedeutung hat die kulturelle Evolution für den Menschen und andere soziale Lebewesen? (ca. 3 Ustd.)

